Skip to main content

A Simple Discussion for Undamped Duffing Impact Oscillator

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9245))

Included in the following conference series:

Abstract

Most vibro-impact oscillators in engineering applications appear to include nonlinear stiffness or damping, but little attention has been paid to this kind of oscillator. Thus, in present paper, a physical model for an undamped and periodically forced Duffing oscillator with a constraint which leads to motions impacts was analyzed. Computational method was used to solve the nonlinear governing equations. Rich dynamical behaviors including periodic motion, chaotic motion, chattering and grazing were observed in this simple system. Influence of non-dimensional system parameters including the nonlinear stiffness coefficient β, the forced frequency Ω, the clearance Δ on motion character of the system were also discussed through corresponding bifurcation diagrams. It is supposed that: (a) chattering appears when Δ less than certain threshold. (b) chaotic motion arises when β larger than certain threshold. (c) grazing bifurcation occurs when r larger than certain threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Shaw, S.W., Holmes, P.: A periodically forced piecewise linear oscillator. J. Sound Vib. 90, 129–155 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ibrahim, R.A.: Vibro-impact dynamics: modeling, mapping and applications. Springer (2009)

    Google Scholar 

  3. Shaw, S.W., Holmes, P.: Periodically forced linear oscillator with impacts: chaos and long-period motions. Phys. Rev. Lett. 51, 623 (1983)

    Article  MathSciNet  Google Scholar 

  4. Shaw, S.W., Holmes, P.J.: A periodically forced Impact oscillator with large dissipation. J. Appl. Mech. 50, 849–857 (1983)

    Article  MATH  Google Scholar 

  5. Czolczynski, K., Kapitaniak, T.: On the existence of a stable periodic solution of two impacting oscillators with damping. Int. J. Bifurcation Chaos 14, 3931–3947 (2004)

    Article  Google Scholar 

  6. Budd, C., Dux, F., Cliffe, A.: The effect of frequency and clearance variations on single-degree-of-freedom impact oscillators. J. Sound Vib. 184, 475–502 (1995)

    Article  MATH  Google Scholar 

  7. Nordmark, A., Piiroinen, P.: Simulation and stability analysis of impacting systems with complete chattering. Nonlinear Dynam. 58, 85–106 (2009)

    Article  MATH  Google Scholar 

  8. Alzate, R.: Analysis and Application of Bifurcations in Systems with Impacts and Chattering. Università degli Studi di Napoli-FEDERICO II (2008)

    Google Scholar 

  9. Alzate, R., Piiroinen, P.T., di Bernardo, M.: From complete to incomplete chattering: a novel route to chaos in impacting cam-follow system. Int. J. Bifurcation Chaos 22, 1250102 (2012)

    Article  Google Scholar 

  10. Nordmark, B.: Non-periodic motion caused by grazing incidence in an impact oscillator. J. Sound Vib. 145, 279–297 (1991)

    Article  Google Scholar 

  11. Dankowicz, H., Jerrelind, J.: Control of near-grazing dynamics in impact oscillators. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science 461, 3365–3380 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Vasconcellos, R., Abdelkefi, A., Hajj, M.R., Marques, F.D.: Grazing bifurcation in aeroelastic systems with freeplay nonlinearity. Commun. Nonlinear Sci. Numer. Simul. 19, 1611–1625 (2014)

    Article  MathSciNet  Google Scholar 

  13. Luo, A.C.J.: A periodically forced, piecewise linear system. Part I: Local singularity and grazing bifurcation. Commun. Nonlinear Sci. Numer. Simul. 12, 379–396 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, A.C.J., Gegg, B.C.: Grazing phenomena in a periodically forced, friction-induced, linear oscillator. Commun. Nonlinear Sci. Numer. Simul. 11, 777–802 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wen, L.: Codimension-2 hopf bifurcation of a two-degree-of-freedom vibro-impact system. J. Sound Vib. 242, 475–485 (2001)

    Article  Google Scholar 

  16. Luo, G.W., Xie, J.H.: Hopf bifurcations and chaos of a two-degree-of-freedom vibro-impact system in two strong resonance cases. Int. J. Non Linear Mech. 37, 19–34 (2002)

    Article  MATH  Google Scholar 

  17. Luo, G.W., Lv, X.H.: Controlling bifurcation and chaos of a plastic impact oscillator. Nonlinear Anal. Real World Appl. 10, 2047–2061 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Luo, G., Zhang, Y., Xie, J., Zhang, J.: Periodic-impact motions and bifurcations of vibro-impact systems near 1:4 strong resonance point. Commun. Nonlinear Sci. Numer. Simul. 13, 1002–1014 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lee, J.-Y., Nandi, A.K.: Signal processing of chaotic impacting series, IET Conference Proceedings, Institution of Engineering and Technology, pp. 7–7 (1997)

    Google Scholar 

  20. Lee, J.Y., Nandi, A.K.: Blind deconvolution of impacting signals using higher-order statistics. Mech Syst Signal Process 12, 357–371 (1998)

    Article  Google Scholar 

  21. Bonsel, J., Fey, R., Nijmeijer, H.: Application of a dynamic vibration absorber to a piecewise linear beam system. Nonlinear Dynam. 37, 227–243 (2004)

    Article  MATH  Google Scholar 

  22. Chatterjee, S., Mallik, A.K.: Bifurcation and chaos in autonomous self-excited oscillators within impact damping. J. Sound Vib. 191, 539–562 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rong, H., Wang, X., Xu, W., Fang, T.: Subharmonic response of a single-degree-of-freedom nonlinear vibroimpact system to a randomly disordered periodic excitation. J. Sound Vib. 327, 173–182 (2009)

    Article  Google Scholar 

  24. Li, C., Xu, W., Feng, J., Wang, L.: Response probability density functions of Duffing-Van der Pol vibro-impact system under correlated Gaussian white noise excitations. Physica A 392, 1269–1279 (2013)

    Article  MathSciNet  Google Scholar 

  25. Zhu, H.T.: Response of a vibro-impact Duffing system with a randomly varying damping term. Int. J. Non Linear Mech. 65, 53–62 (2014)

    Article  Google Scholar 

  26. Zhu, H.T.: Stochastic response of vibro-impact Duffing oscillators under external and parametric Gaussian white noises. J. Sound Vib. 333, 954–961 (2014)

    Article  Google Scholar 

  27. Yue, X., Xu, W., Wang, L.: Global analysis of boundary and interior crises in an elastic impact oscillator. Commun. Nonlinear Sci. Numer. Simul. 18, 3567–3574 (2013)

    Article  MathSciNet  Google Scholar 

  28. Shaw, S.: The dynamics of a harmonically excited system having rigid amplitude constraints, Part 1: Subharmonic motions and local bifurcations. J. Appl. Mech. 52, 453–458 (1985)

    Article  Google Scholar 

  29. Struble, R., Yionoulis, S.: General perturbational solution of the harmonically forced duffing equation. Arch. Rational Mech. Anal. 9, 422–438 (1962)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fei, J., Lin, B., Yan, S., Zhang, X. (2015). A Simple Discussion for Undamped Duffing Impact Oscillator. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2015. Lecture Notes in Computer Science(), vol 9245. Springer, Cham. https://doi.org/10.1007/978-3-319-22876-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22876-1_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22875-4

  • Online ISBN: 978-3-319-22876-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics