Abstract
This paper presents a high-speed tracking control approach for third-order piezo-actuated nanopositioning stages, which extends the vibration control strategies tailored for damping the resonant modes of second-order systems (SOSs) to third-order systems (TOSs). The extension consists of three steps: i) decomposing the TOS into a SOS and a first-order system (FOS); ii) designing the vibration controller for the SOS; iii) extending the vibration controller to the TOS by cascading the controller with the inversion of the FOS. To illustrate the effectiveness of the proposed approach, the positive position feedback (PPF) controller cascaded with dc-gain inversion of FOS is designed. The extended PPF controller is adopted in the inner feedback loop to damp the resonant mode of the system. Then, in the outer loop, a high-gain proportional-integral (PI) controller is utilized to minimize the tracking errors due to disturbances and modeling uncertainties. Experimental results on a piezo-actuated nanopositioning stage demonstrate that the proposed control approach achieves high-speed tracking by improving the control bandwidth from 80 Hz (with PI controller) to 322 Hz.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tian, Y.L., Shirinzadeh, B., Zhang, D.W., Alici, G.: Development and dynamic modelling of a flexure-based Scott-Russell mechanism for nanomanipulation. Mech. Syst. Signal Process. 23(3), 957–978 (2009)
Yong, Y.K., Moheimani, S.O.R., Kenton, B.J., Leang, K.K.: Invited review article: High-speed flexure-guided nanopositioning: Mechanical design and control issues. Rev. Sci. Instrum. 83(12), 121101 (2012)
Polit, S., Dong, J.Y.: Development of a high-bandwidth XY nanopositioning stage for high-rate micro-/nanomanufacturing. IEEE/ASME Trans. Mechatron. 16(4), 724–733 (2011)
Fleming, A.J., Leang, K.K.: Design, Modeling and Control of Nanopositioning Systems. Springer, London (2014)
Gu, G.Y., Zhu, L.M., Su, C.Y., Ding, H., Fatikow, S.: Modeling and control of piezo-actuated nanopositioning stages: A survey. IEEE Trans. Autom. Sci. Eng. (in press). doi:10.1109/TASE.2014.2352364
Devasia, S., Eleftheriou, E., Moheimani, S.O.R.: A survey of control issues in nanopositioning. IEEE Trans. Control Syst. Technol. 15(5), 802–823 (2007)
Clayton, G.M., Tien, S., Leang, K.K., Zou, Q.Z., Devasia, S.: A review of feedforward control approaches in nanopositioning for high-speed SPM. ASME J. Dyn. Syst., Meas., Control 131(6), 061101 (2009)
Li, C.X., Gu, G.Y., Yang, M.J., Zhu, L.M.: High-speed tracking of a nanopositioning stage using modified repetitive control. IEEE Trans. Autom. Sci. Eng. (in press). doi:10.1109/TASE.2015.2428437
Xu, Q.S., Li, Y.M.: Model predictive discrete-time sliding mode control of a nanopositioning piezostage without modeling hysteresis. IEEE Trans. Control Syst. Technol. 20(4), 983–994 (2012)
Li, C.X., Gu, G.Y., Yang, M.J., Zhu, L.M.: Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage. Rev. Sci. Instrum. 84(12), 125111 (2013)
Schitter, G., Thurner, P.J., Hansma, P.K.: Design and input-shaping control of a novel scanner for high-speed atomic force microscopy. Mechatronics 18(5), 282–288 (2008)
Ratnam, M., Bhikkaji, B., Fleming, A.J., Moheimani, S.O.R.: PPF control of a piezoelectric tube scanner. In: 44th IEEE Conference on CDC-ECC 2005, pp. 1168–1173 (2005)
Fleming, A.J., Leang, K.K.: Integrated strain and force feedback for high-performance control of piezoelectric actuators. Sens. Actuat. A: Phys. 161(1), 256–265 (2010)
Bhikkaji, B., Moheimani, S.O.R.: Integral resonant control of a piezoelectric tube actuator for fast nanoscale positioning. IEEE/ASME Trans. Mechatron. 13(5), 530–537 (2008)
Gu, G.Y., Zhu, L.M., Su, C.Y., Ding, H.: Motion control of piezoelectric positioning stages: modeling, controller design and experimental evaluation. IEEE/ASME Trans. Mechatron. 18(5), 1459–1471 (2013)
Yong, Y.K., Ahmed, B., Moheimani, S.O.R.: Atomic force microscopy with a 12-electrode piezoelectric tube scanner. Rev. Sci. Instrum. 81(3), 033701 (2010)
Tomizuka, M.: Zero phase error tracking algorithm for digital control. ASME J. Dyn. Syst., Meas., Control 109(1), 65–68 (1987)
Butterworth, J.A., Pao, L.Y., Abramovitch, D.Y.: A comparison of control architectures for atomic force microscopes. Asian J. Control 11(2), 175–181 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Li, CX., Gu, GY., Yang, MJ., Zhu, LM. (2015). Positive Position Feedback Based High-Speed Tracking Control of Piezo-actuated Nanopositioning Stages. In: Liu, H., Kubota, N., Zhu, X., Dillmann, R., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2015. Lecture Notes in Computer Science(), vol 9245. Springer, Cham. https://doi.org/10.1007/978-3-319-22876-1_60
Download citation
DOI: https://doi.org/10.1007/978-3-319-22876-1_60
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22875-4
Online ISBN: 978-3-319-22876-1
eBook Packages: Computer ScienceComputer Science (R0)