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Reasoning about Separation using
Abstraction and Reification

Cliff B. Jones and Nisansala Yatapanage

School of Computing Science, Newcastle University, United Kingdom

Abstract. Showing that concurrent threads operate on separate por-
tions of their shared state is a way of establishing non-interference. Fur-
thermore, in many useful programs, ownership of parts of the state are
exchanged dynamically. Reasoning about separation and ownership of
heap-based variables is often conducted using some form of separation
logic. This paper examines the issue of separation and investigates the
use of abstraction to specify and to reason about separation in program
design. Two case studies demonstrate that using separation as an ab-
straction is a potentially useful approach.
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1 Introduction

Concurrent programs are difficult to reason about either formally or informally
because of potential interference between threads; interference can be managed
by separation of the parts of the state accessible to threads; separation arguments
are often complicated by dynamic changes of ownership.

It is useful to distinguish the issues arising in the design of concurrent
programs before fixing on specific notations — clearly, separation/ownership
and interference constitute underlying issues. An obvious demarcation is to
employ Separation Logic to tackle the first set of issues and something like
Rely/Guarantee reasoning for the latter.

It has been shown elsewhere that ‘pulling apart’ the standard rely/guarantee
notation throws light on the issue of interference. In [JHC15], the benefits of
studying issues prior to choosing a notation are discussed. In particular, that
paper takes a new look at specifying and reasoning about interference (the new
presentation is more fully explained in [HJC14]).

In the same spirit, the current paper examines the issue of separation. The
separation of storage into disjoint portions is clearly an issue for concurrent pro-
gram design — when it can be established, it is possible to reason separately
about threads or processes that operate on the disjoint sections. Tony Hoare’s
early attempt to extend his ‘axiomatic basis’ [Hoa69] to parallel programs pro-
vides this insight in [Hoa72]. Hoare shows that pre/post conditions of the code
for separate threads can be conjoined providing the variables used by the threads



are disjoint. He tackled normal (or ‘scoped’) variables where dynamic ownership
might be controlled by something like monitors.

In comparison to scoped variables, it is more delicate to reason about sepa-
ration over ‘heap’ variables whose addresses are computed by the programs in
which they occur. Furthermore, exchange of ownership of heap addresses between
threads is often disguised by intricate pointer manipulation.

The issues of separation and ownership are certainly handled well by Con-
current Separation Logic [O’H07]. The current paper suggests that some forms
of separation can be specified by using data abstraction. The only novelty with
respect to standard data abstraction/reification is that the representation must
be shown to preserve the separation property of the abstraction.

Two examples are presented here: a simple list reversal algorithm that is
sequential and comes from one of Reynolds’ early papers [Rey02] on Separation
Logic and a concurrent sorting algorithm. In both cases the implementation uses
(separate portions of) heap storage and the ownership of heap cells is exchanged
between threads. It would be possible to object that the examples presented
look like simple data reifications but that is, in fact, the main point. Using data
abstraction, along with the one additional idea that separate abstract variables
can be reified onto a shared data structure, throws light on the concepts of
separation and ownership.

Of course, some notation has to be used for the specifications and requisite
proof obligations but this is well-established and was not devised for concurrency.
The authors happen to use ideas from VDM1 but the same points could be made
in Z or Event-B. In more complicated examples, it is useful to be explicit about
‘framing’ and VDM does offer ways of specifying read and write access to parts
of the state. For framing, the ideas in [Bor00] or ‘dynamic frames’ [Kas11] would
also be options.

The observation that it is possible to tackle some cases of reasoning about
separation by using layers of abstraction is in no way intended to challenge
research on separation logics. However, as with the reported reformulation of
rely/guarantee reasoning, focussing on the issue rather than a specific notation
might give a new angle on notations for separation and/or reduce the need to
develop new logics.

Hints for a top-down development of the list reversal algorithm are sketched
in [JHC15]. The current paper completes the development and fills in details
omitted there — more importantly, it draws out the consequences (cf. Section 4)
and adds the more substantial example of concurrent merge sorting in Section 3.

2 In-place List Reversal

As observed in [JHC15], as well as separation being crucial for concurrent pro-
grams, it also has a role in sequential programs. In fact, Separation Logic [Rey02]
was conceived for sequential programs; the development of Concurrent Separa-
tion Logic [O’H07] came later. While Section 3 applies the idea of separation as

1 VDM notation is used throughout the current paper; see [Jon90] for details.



an abstraction to a concurrent sorting algorithm, this section shows the appli-
cation of the same idea to the development of a sequential program whose final
implementation performs in-place reversal of a sequence.

2.1 Original presentation

In [Rey02], John Reynolds presented an efficient sequential list reversal algo-
rithm; the fact that the code operates in-place makes it an ideal vehicle for intro-
ducing the idea of using abstraction to handle separation. Interestingly, Reynolds
introduced the problem by starting with the algorithm, shown in Figure 1. The
list is represented by a value for each item, with the subsequent address con-
taining a pointer to the next item. The algorithm utilises three pointers (i, j,

k), where i initially points to the start of the list, k is a temporary place-holder
and at termination of the algorithm, j points to the reversed list.

Reynolds used the separating conjunction of Separation Logic to develop a
useful specification of the algorithm from the code. His specification demon-
strates the ability of the separating conjunction operator to hide the details of
the separation, such as showing that the two lists must remain separate and that
they are separate from all other lists. While this is certainly a useful method for
handling the complexities of separation, the following sections show how layered
abstractions can offer a viable alternative.

j = null;

while (i != null) {

k = *(i+1);

*(i+1) = j;

j = i;

i = k;

}

Fig. 1. Reynolds’ in-place list reversal program in C notation (*n is the C-style pointer
dereference of pointer n).

2.2 Abstract specification

The notion of reversing a sequence is expressed simply as a recursive function:

rev : Val∗ → Val∗

rev(list) 4 if list = [ ] then list else rev(tl list) y [hd list ]



The initial step is to develop a program whose state is a pair of lists:

Σ0 = (Val∗ ×Val∗)

where the first, referred to as s, is the original list and the second, referred to
as r , should finally contain the reversed list. It is worth observing that the two
fields of Σ0 are implicitly separate — they are ‘scoped’ variables and, unless
a language allows something like ‘parameter passing by reference’, there is no
debate about a lack of separation.

An operation to compute the reverse of a list can be specified as follows:

post-REVERSE0((s, r), (s ′, r ′)) 4 r ′ = rev(s)

It is straightforward to develop the abstract program in Figure 2 (the body
of the while loop is given as a specified operation because its isolation makes
the reification below clearer). The loop preserves the value of rev(s) y r ; the
standard VDM proof rule for loops handles termination by requiring that the
relation be well-founded — thus rev(s ′) y r ′ = rev(s) y r ∧ len s ′ < len s.

r ← [ ];
while s 6= [ ] do

STEP0

end while

pre-STEP0((r , s)) 4 s 6= [ ]

post-STEP0((r , s), (r ′, s ′)) 4 r ′ = [hd s] y r ∧ s ′ = tl s

Fig. 2. Abstract list reversal program.

2.3 Representing sequences

The program in Figure 2 is based on abstract sequences and cannot address
things like moving pointers to achieve in-place operation. To show how the list
reversal can occur without moving the data, the abstract state needs to be
represented as a heap:

Heap = Ptr
m−→ (Val × [Ptr ])

(In VDM, maps (D
m−→ R) are finite constructed functions; the fields of a pair

pr ∈ (Val × [Ptr ]) are accessed here2 by index, e.g. pr1; the square brackets
around Ptr indicate that it is optional and that nil /∈ Ptr is a possible value.)

Such a heap might contain information for other threads and/or garbage
discarded by processes. Section 2.4 completes the reification to just such a Heap
but, here, an intermediate step is introduced which shows two scoped variables

2 VDM aficionados would normally employ a ‘record’ construct here but using a pair
and selecting by index reduces the potentially unfamiliar notation in this paper.



each containing a sub-heap that is precisely a sequence representation (Srep).
(Although this intermediate representation could actually be elided, a significant
advantage of its use is that Srep objects are also useful for the development of
the concurrent program in Section 3.) One could define Srep using a datatype
invariant but the proofs below benefit from defining the concept inductively as
the least map Srep ⊆ Heap containing:3

{ } ∈ Srep
sr ∈ Srep ∧ p ∈ Ptr ∧ p /∈ dom sr ⇒ ({p 7→ (v , start(sr))} ∪ sr) ∈ Srep

Furthermore, a useful function that defines the start element can be defined over
the recursive construction:

start({ }) = nil
start({p 7→ (v , start(sr))} ∪ sr) = p

The state for this intermediate development step contains two Srep objects
which are required to have disjoint domains:4

Σ1 = (Srep × Srep)

where

inv -Σ1((sr , rr)) 4 sep(sr , rr)

sep : Srep × Srep → B

sep(sr , rr) 4 dom sr ∩ dom rr = { }

On the Σ1 representation, the specification of the operation corresponding
to the body of the while loop in Figure 2 is:

pre-STEP1(sr , rr) 4 sr 6= { }
post-STEP1((sr , rr), (sr ′, rr ′)) 4

let p = start(sr) in
sr ′ = {p} −C sr ∧ rr ′ = rr ∪ {p 7→ (sr(p)1, start(rr))}

Lemma 1. It is necessary to show that STEP1 preserves the invariant of Σ1.

(sr , rr) ∈ Σ1 ∧ pre-STEP1((sr , rr)) ∧ post-STEP1((sr , rr), (sr ′, rr ′)) ⇒
(sr ′, rr ′) ∈ Σ1

The proof is by induction over Srep.5

3 Of course, Srep and start are mutually recursive but it is clearer to separate their
descriptions.

4 So far, separation is a convenience that ensures transferring cells from one sequence to
the other provides unused pointers; the restriction plays a bigger role in Section 2.4.

5 The conference version of this paper omits all detailed proofs which are, anyway,
mostly routine — they can be found in the Technical Report [?, Appendix].



Proof obligations for data reification are standard in methods such as VDM
(cf. [Jon90, Chap. 8]): retrieve functions are homomorphisms from the represen-
tation back to the abstraction.

retr0 : Σ1 → Σ0

retr0((sr , rr)) 4 (gather(sr), gather(rr))

The gather function is again defined over the inductive construction of Srep:

gather : Srep → Val∗

gather({ }) = [ ]
gather({p 7→ (v , start(sr))} ∪ sr) = [v ] y gather(sr)

VDM defines an ‘adequacy’ proof obligation which requires that, for each
abstract state, there exists at least one representation state.

Lemma 2. There is at least one representation for each abstract state:

∀s ∈ Val∗ · ∃sr ∈ Srep · gather(sr) = s

The proof of this lemma is by induction on s.

The key commutativity proof for reification shows that the design step models
the abstract specification:

Lemma 3. STEP1 models (under retr0) the abstract STEP0

inv -Σ1(σ1) ∧ pre-STEP0(retr0(σ1)) ∧ post-STEP1(σ1, σ
′
1) ⇒

post-STEP0(retr0(σ1), retr0(σ′1))

The proof follows from unfolding the defined functions/predicates.

2.4 The heap

Although the two Srep variables in the preceding section are ‘heap-like’, each
is used like a scoped variable. This section shows that the scoped variables can
be represented in a single heap and that the behaviour on the heap remains as
specified in Section 2.3.

This final representation uses a single heap (hp) and two pointers (i , j ). The
hp field of Σ2 is essentially the heap underlying Figure 1.6

Σ2 = (Heap × Ptr × Ptr)

where

inv -Σ2((hp, i , j )) 4
∃sr , rr ∈ Srep · sr ∪ rr ⊆ hp ∧ i = start(sr) ∧ j = start(rr)

6 The fact that ‘cells’ contain both data and pointer (rather than them being in
locations n and n + 1 as in Figure 1) is incidental — think of car/cdr in Lisp.
Furthermore, the decision to use Ptr rather than N is deliberate.



This is again an exercise in data reification. Here, it is mandatory that sep
holds between the two sub-heaps because their union is used in (sr ∪ rr) ⊆ hp;
the fact that this is not an equality admits the possibility of other information
in the heap. The retrieve function in this case is:

retr1 : Σ2 → Σ1

retr1((hp, i , j )) 4 (trace(hp, i) C hp, trace(hp, j ) C hp)

where:

trace : Heap × Ptr → Ptr -set

trace(hp, p) 4 if p = nil
then { }
else {p} ∪ trace(hp, hp(p)2)

The definedness of trace for Srep ⊆ Heap follows from inv -Σ2.

Lemma 4. The trace function applied to the start of an Srep returns exactly
the pointers in that Srep; therefore, restricting the domain of a heap containing
an Srep to such a trace yields the original Srep.

sr ∈ Srep ∧ sr ⊆ hp ⇒ trace(hp, start(sr)) C hp = sr

The proof is by induction over Srep.

The adequacy proof obligation for Σ2 is:

Lemma 5. There is at least one representation in Σ2 for each Σ1 state:

∀(sr , rr) ∈ Σ1 · ∃(hp, i , j ) ∈ Σ2 · retr1((hp, i , j )) = (sr , rr)

The proof creates a minimal hp that contains exactly the union of sr/rr
which are disjoint.

On Σ2, the specification of the operation corresponding to STEP1 above is:

pre-STEP2((hp, i , j )) 4 i 6= nil
post-STEP2((hp, i , j ), (hp′, i ′, j ′)) 4

i ′ = hp(i)2 ∧ j ′ = i ∧ hp′ = hp † {i 7→ (hp(i)1, j )}
for which the reification proof obligation is:

Theorem 1. STEP2 models (under retr1) the abstract STEP1

inv -Σ2(σ2) ∧ pre-STEP1(retr1(σ2)) ∧ post-STEP2(σ2, σ
′
2) ⇒

post-STEP1(retr1(σ2), retr1(σ′2))

The proof again follows from unfolding the defined functions/predicates.

Code (in C++) that satisfies post-STEP2 is given in Figure 3. The final
step in the correctness argument is to note that the loop in Figure 2 terminates
when s = [ ] and the loop on the representation terminates when i = nil; under
retr1/retr0, these conditions are equivalent.



Class Pair{

Val v;

Pair* p;

}

Pair* reverse(Pair* i){

Pair* k;

Pair* j = NULL;

while (i != NULL) {

// STEP

k = i->p;

i->p = j;

j = i;

i = k;

}

return j;

}

Fig. 3. C++ implementation of the list reversal algorithm.

2.5 Observations

This simple sequential example illustrates how the motto separation is an ab-
straction can work in practice. In the abstraction (Σ0) of Section 2.2, the two
variables are assumed to be distinct; standard data reification rules apply where
that distinction is obvious; in the step to Σ2, it must be established that the
abstraction of separation holds in the representation as (changing) portions of a
shared heap.

A valuable by-product of the layered design is that the algorithm is discussed
on the abstraction and neither the reification step nor its justification are con-
cerned with list reversal as such. This is, of course, in line with the message
of [Wir76].

There are some incidental bonuses from the use of VDM: invariants (and the
use of predicate restricted types) effectively provide pre conditions for the func-
tions; use of relational post conditions avoids the need for what are essentially
auxiliary variables to refer to the initial state; and the use of ‘LPF’ [BCJ84] sim-
plifies the construction of logical expressions where terms and/or propositions
can fail to denote.

This example is simple and, in fact, the development presented here is even
clearer than that in an earlier draft. The point is that the important notion of
separation has been tackled without any special notation. Section 3 employs the
same approach on a program that uses parallelism.

3 Mergesort

The preceding list reversal example demonstrates the idea of handling separa-
tion via abstraction in a sequential development. This section applies the same



idea to a concurrent design: the well-known mergesort algorithm which sorts by
recursively splitting lists. At each step, the argument list is divided into two
parts (preferably, but not necessarily, of roughly equal sizes) which are recur-
sively submitted to mergesort ; as the recursion unwinds, the two sorted lists are
merged into a single sorted list.

3.1 Specification

The notion of sorting is easy to specify as a relation:

is-sort : Val∗ ×Val∗ → B

is-sort(s, s ′) 4 ordered(s ′) ∧ permutes(s ′, s)

The ordered predicate tests that its argument is an ascending sequence.

ordered : Val∗ → B

ordered(s) 4 ∀i ∈ {1..len s − 1} · s(i) ≤ s(i + 1)

The permutes predicate tests that its two arguments contain the same elements;
here this is done by comparing the ‘bag’ (‘multiset’) of occurrences:

permutes : Val∗ ×Val∗ → B

permutes(s, s ′) 4 bag-of (s ′) = bag-of (s)

bag-of : Val∗ → (Val
m−→ N1)

bag-of (s) 4 {e 7→ card {i ∈ inds s | s(i) = e} | e ∈ elems s}

3.2 Algorithm

The basic idea of merge sorting can be established with a recursive function
(mergesort defined below). This uses a merge function that selects the minimum
head element from its two argument lists and recurses:

merge : Val∗ ×Val∗ → Val∗

merge(s1, s2) 4
if s1 = [ ] ∨ s2 = [ ]
then s1 y s2
else if (hd s1 ≤ hd s2)

then [hd s1] y merge(tl s1, s2)
else [hd s2] y merge(s1, tl s2)



Lemma 6. The merge function has the property that the final list is a permu-
tation of the initial two lists conjoined:

permutes(merge(s1, s2), s1 y s2)

The proof is by nested induction on the lists.

Lemma 7. The merge function also satisfies the property that, if the argument
lists are ordered, so is the resulting merged list:

ordered(s1) ∧ ordered(s2) ⇒ ordered(merge(s1, s2))

The proof is identical in structure to that of Lemma 6.

The mergesort function itself is defined as follows:

mergesort : Val∗ → Val∗

mergesort(s) 4
if len s ≤ 1
then s
else let s1, s2 be st s1 y s2 = s ∧ s1 6= [ ] ∧ s2 6= [ ] in

merge(mergesort(s1),mergesort(s2))

Lemma 8. The mergesort function ensures that the resulting list is both sorted
and a permutation of the initial list:

s ′ = mergesort(s) ⇒ is-sort(s, s ′)

Because of the arbitrary split, the proof uses course-of-values induction on s.

3.3 Representing sequences

Having dealt with the algorithmic ideas in Section 3.2, the method used in
Section 2.3 can be followed by reifying the abstract sequences into Srep objects
as defined in Section 2.3.

The implementation consists of two operations: MSORT1 operates on S1:

S1 = (Srep × Srep),

while the MERGE1 operation uses a state that contains three instances of Srep:

M1 = (Srep × Srep × Srep),

where the three fields are pairwise separate (sep cf. Section 2.3). As in Section 2.3,
this notion of separation is used here only to simplify the exchange of ownership
of cells between l , r and a. In Section 3.4, separation justifies the embedding of
three Srep objects in a single heap.

Turning to the presentation of the (abstract) program, standard sequential
program constructs (e.g. the while loop) were used in Section 2.2. This approach
is not followed here because it would be a digression to derive a proof rule
for the (non-tail) recursion needed in MSORT1 (this construct is not covered



in [Jon90]). Instead the recursion in both MERGE1 and MSORT1 is represented
as predicates by ‘quoting post conditions’ (cf. [Jon90, Section 9.3]).

post-MERGE1((l , r , a), (l ′, r ′, a ′)) 4
l = { } ∧ a ′ = r ∧ l ′ = r ′ = { } ∨
r = { } ∧ a ′ = l ∧ l ′ = r ′ = { } ∨
l 6= { } ∧ r 6= { } ∧ l(start(l))1 ≤ r(start(r))1 ∧

post-MERGE1(({start(l)} −C l , r , a), (l ′, r ′,ma)) ∧
a ′ = {start(l) 7→ (l(start(l))1, start((ma))} ∪ma ∨

l 6= { } ∧ r 6= { } ∧ l(start(l))1 > r(start(r))1 ∧
post-MERGE1((l , {start(r)} −C r , a), (l ′, r ′,ma)) ∧
a ′ = {start(r) 7→ (r(start(r))1, start((ma))} ∪ma

Lemma 9. MERGE1 preserves separation:

(l , r , a) ∈ M1 ∧ post-MERGE1((l , r , a), (l ′, r ′, a ′)) ⇒ (l ′, r ′, a ′) ∈ M1

The proof of this lemma is obvious from the form of the proof of Lemma 1.

Lemma 10. The operation MERGE1 mirrors the function merge

∀l , r , a, l ′, r ′, a ′ ∈ Val∗ ·
post-MERGE1((l , r , a), (l ′, r ′, a ′)) ⇒

gather(a ′) = merge(gather(l), gather(r))

Here again, the proof follows that of Lemma 3.

It is necessary to split an Srep into two separate values of that type. The
function split recurses until the argument p is located in the representation:

split : Srep × Ptr → (Srep × Srep)

split(sr , p) 4
if p = start(sr)
then ({ }, sr)
else let (l , r) = split({start(sr)} −C sr , p) in

({start(sr) 7→ (sr(start(sr))1, start(l))} ∪ l , r)

pre p ∈ dom sr

Lemma 11. The split function yields two instances of Srep that are separate:

sr ∈ Srep ∧ p ∈ dom sr ∧ (l , r) = split(sr , p) ⇒
l ∈ Srep ∧ r ∈ Srep ∧ sep(l , r)

The proof is by induction on sr .

Lemma 12. Under the gather function, concatenation of the two lists produced
by split gives the argument list:

sr ∈ Srep ∧ p ∈ dom sr ∧ (l , r) = split(sr , p) ⇒
gather(l) y gather(r) = gather(sr)



This proof follows the structure of that of Lemma 11.

Whereas MERGE1 is used sequentially (there are no concurrent threads), in-
stances of MSORT1 are to be run in parallel. The term ‘parallel’ is used in
preference to ‘concurrently’ precisely because the instances are executed on sep-
arate parts of the heap.

MSORT1

ext wr sr : Srep

post (sr = { } ∨ sr(start(sr))2 = nil) ∧ sr ′ = sr ∨
∃p ∈ dom sr , l , r ∈ Ptr ·

p 6= start(sr) ∧
(l , r) = split(sr , p) ∧
post-MSORT1(l , l ′) ∧ post-MSORT1(r , r ′) ∧
post-MERGE1((l ′, r ′, { }), ({ }, { }, sr ′))

Theorem 2. The final conclusion is that the operation MSORT1 mirrors the
function mergesort:

post-MSORT1(sr , sr ′) ⇒ gather(sr ′) = mergesort(gather(sr))

which follows from the lemmas.

3.4 The heap

It is almost as straightforward as in Section 2.4 to develop code for MSORT2 and
MERGE2. There is one interesting addition required because of the concurrent
execution of two instances of MSORT2. The invariants follow the same pattern
as with the sequence reversal example — for MERGE2, the representation in the
Heap is:

M2 = (Heap × Ptr × Ptr × Ptr)

where

inv -M2((hp, x , y , z )) 4
∃l , r , a ∈ Srep ·

l ∪ r ∪ a ⊆ hp ∧ x = start(l) ∧ y = start(r) ∧ z = start(a)

and the corresponding representation for MSORT2 is simply:

S2 = (Heap × Ptr)

where

inv -S2((hp, p)) 4 ∃sr ∈ Srep · sr ⊆ hp ∧ p = start(sr)



The respective retrieve functions are:

retr -m1 : M2 → M1

retr -m1((hp, x , y , z )) 4
(trace(hp, x ) C hp, trace(hp, y) C hp, trace(hp, z ) C hp)

retr -s1 : S2 → S1

retr -s1((hp, p))) 4 (trace(hp, p) C hp)

It is, however, necessary to establish non-interference between the concurrent
threads. This can be done with a simple use of rely/guarantee reasoning:7

rely-MSORT2: p′ = p ∧ trace(hp, p) C hp′ = trace(hp, p) C hp
guar -MSORT2: trace(hp, p)−C hp′ = trace(hp, p)−C hp

The code in Figures 4 and 5 satisfies the specifications of MERGE2 and
MSORT2 respectively; a specific implementation of split is also provided.

Class Pair{

Val v;

Pair* ptr;

}

Pair* merge(Pair* l, Pair* r){

Pair* result;

if (l == NULL){

return r;

}else if (r == NULL){

return l;

}else if (l->v <= r->v){

result = merge(l->ptr, r);

l->ptr = result;

return l;

}else{

result = merge(l, r->ptr);

r->ptr = result;

return r;

}

}

Fig. 4. C++ implementation of MERGE.

7 A suitable formal proof rule is given in Section 4.



Pair* split(Pair* p){

int midlen = getlength(p) / 2;

int counter = 1;

Pair* current = p;

while (counter < midlen){

current = current->ptr;

counter++;

}

Pair* next = current->ptr;

current->ptr = NULL;

return next;

}

Pair* msort(Pair* p){

if (p == NULL || p->ptr == NULL){

return p;

}

Pair* mid = split(p);

Pair* sortedp = msort(p);

Pair* sortedmid = msort(mid);

return merge(sortedp, sortedmid);

}

Fig. 5. C++ implementation of MSORT.

3.5 Observations

As in Section 2, the approach of viewing separation as an abstraction has ben-
efits. As in the earlier example, aspects of VDM such as types restricted by
predicates and relational post conditions play a small part in the development
of merge sort. More significant is that the layered development makes it possi-
ble to divorce the reasoning about merging and sorting from details of how the
abstract state is reified onto heap storage.

Although this example has used some aspects of VDM not needed in Section 2
— in particular, quoting post conditions — it is important to remember that
these are long-standing ideas in VDM and are not specific to reasoning about
the separation issue.

4 Discussion

The research reported in this paper is one vector of the ‘Taming Concurrency’
project in which it is hoped to identify and/or to develop apposite notations for
reasoning about the underlying issues that make designing and justifying intri-
cate concurrent programs challenging. In contrast, starting with a fixed notation
might be seen as a version of ‘to a man with a hammer, everything looks like a
nail’. Of course, using existing notation is not precluded but ensuring that the
issues are clear looks to be a prudent starting point.



The Rely/Guarantee (R/G) approach (of which more below) was devised
for reasoning about the issue of interference. The R/G concept has been sub-
stantially recast in [HJC14] and the new version is summarised in [JHC15]. In
contrast to the monolithic five-tuple approach of [Jon81,Jon83a,Jon83b] for R/G
specifications, [HJC14] presents separate rely and guar constructs in a refine-
ment calculus style and shows their algebraic structure.

The current paper is written in the same spirit. Separation is also a key
issue in thinking about parallel programs. One example of the importance of
separation is the way in which storage is allocated between threads in an oper-
ating system. Separation Logic (SL) has a well-crafted collection of operators for
reasoning about separation/ownership and an attractive feature is the pleasing
algebraic properties of the operators.

This paper –with the help of examples previously tackled with SL– explores
the option of reasoning about separation using predicates defined over heaps.
The idea can be summarised with the motto that separation is an abstraction.
A corollary of this point of view is that representations (e.g. of separate scoped
variables into heap representations) have to preserve the separation property of
the abstraction. Other than the twist of viewing separation as an abstraction,
the method of data reification used here is long-established in the literature.

Analogous to the pulling apart of R/G specifications, an alternative view of
SL might lead to different notational ideas than if the notation itself is taken as
the fixed point. Obviously, the fact that it is possible to reason about separation
without the need to use SL itself is not an argument against SL. One huge benefit
of SL is the tool support that has been developed around the notation. These
tools support a ‘bottom-up’ approach that is advantageous with legacy software.
The pleasing algebraic relationship between SL operators has been referred to
above. These operators are also able to express some constraints in a succinct
way (e.g. the use of separating conjunction with recursion to state that a chain
of pointers has no loops).

A bonus from the top down approach can be seen in the examples in this
paper: the essence of each algorithm is documented and reasoned about on the
abstraction and this is separated from arguments about the messy details of the
(heap) representations. The hope is that seeing what can be done in a top-down
view using abstraction could prompt new requirements for SL-like notations.
The approach might, conceivably, also control the proliferation against which
Matt Parkinson warns in [Par10].

Separation is, of course, a way of ruling out interference so it is interesting to
understand those situations where a user can choose which approach to adopt.
With scoped variables, there is a variety of ways to define the named variables
(frame) of different threads. VDM allows state components to be marked as hav-
ing rd/wr access; the keyword notation is rather heavy but serves the purpose
and many alternatives could be considered. In the refinement calculus presen-
tation of [HJC14,JHC15], write access is made clear but not access for reading.
Section 3.4 above indicates the recording of read/write access to subsets of heap
addresses. (There are, of course, occasions where read:write clashes require as-



sumptions in the reading process and rely conditions are an obvious candidate for
recording such assumptions.) One approach that is used with separation logics
to handle such access constraints is to employ ‘fractional permissions’ [Boy03].

Technical connections between R/G and SL are considered in [VP07,Vaf07]).
It might also be worth noting one of the Laws in [HJC14]:

[q1 ∧ q2] v (guar g1 • (rely g2 • [q1])) || (guar g2 • (rely g1 • [q2]))

which both handles the general case of interference and rather clearly shows
that the attractive prospect of conjoining the post conditions of parallel threads
can be achieved (only) if their respective guarantee conditions ensure sufficient
separation. This emphasises that complete separation is an extreme case of min-
imising interference.

One last comment on the similarities is that the importance of (data) ab-
straction in the proposed way of looking at separation nicely mirrors its key role
in R/G methods [Jon07].

More narrowly, on the content of this paper, alternatives considered by the
authors include:

– It would simplify the notation to separate the Heap into two mappings (one
for the Val and the other for the next Ptr) because it would remove the need
to use subscripts to access the components of the pair.

– In both examples, it would be possible to omit the intermediate representa-
tion and to move directly from the respective abstract states to the general
Heap. As mentioned in Section 2.3, the fact that Srep is used in both exam-
ples is one argument for its separation — the other argument is the divorce
of the algorithm design from the messy heap representation details.

For future work, it would be useful to develop a ‘theory’ of Srep objects. An-
other interesting avenue to explore is the extent to which recording the relation-
ship between a clean abstraction and its representation (given here as ‘retrieve
functions’) could be used to generate code automatically from the abstract algo-
rithm. Finally, the need to reason about both separation and interference will be
discussed in another paper on which the current authors are working (together
with Andrius Velykis) which covers the design of concurrent implementations of
tree and graph representations.
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