Skip to main content

Integrating Feedback and Predictive Control in a Bio-Inspired Model of Visual Pursuit Implemented on a Humanoid Robot

  • Conference paper
  • First Online:
Biomimetic and Biohybrid Systems (Living Machines 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9222))

Included in the following conference series:

Abstract

In order to follow a moving visual target, humans generate voluntary smooth pursuit eye movements. The purpose of smooth pursuit eye movements is to minimize the retinal slip, i.e. the target velocity projected onto the retina. In this paper we propose a model able to integrate the major characteristics of visually guided and predictive control of the smooth pursuit. The model is composed of an Inverse Dynamics Controller (IDC) for the feedback control, a neural predictor for the anticipation of the target motion and a Weighted Sum module that is able to combine the previous systems in a proper way. In order to validate the general model, two implementations with two different IDC controllers have been carried out. The first one uses a backstepping-based controller to generate velocity motor commands for the eye movements and the other one uses a bio-inspired neurocontroller to generate position motor commands for eye-neck coordinated movements. Our results, tested on the iCub robot simulator, show that both implementations can use prediction for a zero-lag visual tracking, a feedback based control for “unpredictable” target pursuit and can combine these two approaches by properly switching from one to the other, guaranteeing a stable visual pursuit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fukushima, J., Morita, N., Fukushima, K., Chiba, T., Tanaka, S., Yamashita, I.: Voluntary control of saccadic eye movements in patients with schizophrenic and affective disorders. Journal of Psychiatric Research 24(1), 9–24 (1990)

    Article  Google Scholar 

  2. Robinson, D.A., Gordon, J., Gordon, S.: A model of the smooth pursuit eye movement system. Biological Cybernetics 55(1), 43–57 (1986)

    Article  Google Scholar 

  3. Krauzlis, R.J., Lisberger, S.G.: A model of visually-guided smooth pursuit eye movements based on behavioral observations. Journal of Computational Neuroscience 1(4), 265–283 (1994)

    Article  Google Scholar 

  4. Shibata, T., Tabata, H., Schaal, S., Kawato, M.: A model of smooth pursuit in primates based on learning the target dynamics. Neural Networks 18(3), 213–224 (2005)

    Article  MATH  Google Scholar 

  5. Zambrano, D., Falotico, E., Manfredi, L., Laschi, C.: A model of the smooth pursuit eye movement with prediction and learning. Applied Bionics and Biomechanics 7(2), 109–118 (2010)

    Article  Google Scholar 

  6. de Xivry, J.J.O., Coppe, S., Blohm, G., Lefevre, P.: Kalman filtering naturally accounts for visually guided and predictive smooth pursuit dynamics. The Journal of Neuroscience 33(44), 17301–17313 (2013)

    Article  Google Scholar 

  7. Shibata, T., Vijayakumar, S., Conradt, J., Schaal, S.: Biomimetic oculomotor control. Adaptive Behavior 9(3–4), 189–207 (2001)

    Article  Google Scholar 

  8. Falotico, E., Zambrano, D., Muscolo, G.G., Marazzato, L., Dario, P., Laschi, C.: Implementation of a bio-inspired visual tracking model on the icub robot. In: Proc. 19th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN 2010), pp. 564–569. IEEE (2010)

    Google Scholar 

  9. Falotico, E., Taiana, M., Zambrano, D., Bernardino, A., Santos-Victor, J., Dario, P., Laschi, C.: Predictive tracking across occlusions in the icub robot. In: Proceedings of the 9th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2009), pp. 486–491, December 2009

    Google Scholar 

  10. Vannucci, L., Cauli, N., Falotico, E., Bernardino, A., Laschi, C.: Adaptive visual pursuit involving eye-head coordination and prediction of the target motion. In: Proceedings of the 14th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2014), pp. 541–546. IEEE (2014)

    Google Scholar 

  11. Dario, P., Carrozza, M.C., Guglielmelli, E., Laschi, C., Menciassi, A., Micera, S., Vecchi, F.: Robotics as a future and emerging technology: biomimetics, cybernetics, and neuro-robotics in european projects. IEEE Robotics & Automation Magazine 12(2), 29–45 (2005)

    Article  MATH  Google Scholar 

  12. Viollet, S., Franceschini, N.: A high speed gaze control system based on the vestibulo-ocular reflex. Robotics and Autonomous systems 50(4), 147–161 (2005)

    Article  Google Scholar 

  13. Lenz, A., Balakrishnan, T., Pipe, A.G., Melhuish, C.: An adaptive gaze stabilization controller inspired by the vestibulo-ocular reflex. Bioinspiration & Biomimetics 3(3), 035001 (2008)

    Article  Google Scholar 

  14. Franchi, E., Falotico, E., Zambrano, D., Muscolo, G., Marazzato, L., Dario, P., Laschi, C.: A comparison between two bio-inspired adaptive models of vestibulo-ocular reflex (vor) implemented on the icub robot. In: Proceedings of the 10th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2010), pp. 251–256, December 2010

    Google Scholar 

  15. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review 65(6), 386 (1958)

    Article  MathSciNet  Google Scholar 

  16. Weigend, A.S., Huberman, B.A., Rumelhart, D.E.: Predicting the future: A connectionist approach. International Journal of Neural Systems 1(03), 193–209 (1990)

    Article  Google Scholar 

  17. Widrow, B., Hoff, M.E.: Adaptive switching circuits (1960)

    Google Scholar 

  18. Beira, R., Lopes, M., Praga, M., Santos-Victor, J., Bernardino, A., Metta, G., Becchi, F., Saltarén, R.: Design of the robot-cub (icub) head. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation (ICRA 2006), pp. 94–100. IEEE (2006)

    Google Scholar 

  19. Kokotovie, P.V.: The joy of feedback: nonlinear and adaptive. IEEE Control Systems Magazine 12(3), 7–17 (1992)

    Article  Google Scholar 

  20. Janabi-Sharifi, F., Hayward, V., Chen, C.S.: Discrete-time adaptive windowing for velocity estimation. IEEE Transactions on Control Systems Technology 8(6), 1003–1009 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Vannucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vannucci, L., Falotico, E., Di Lecce, N., Dario, P., Laschi, C. (2015). Integrating Feedback and Predictive Control in a Bio-Inspired Model of Visual Pursuit Implemented on a Humanoid Robot. In: Wilson, S., Verschure, P., Mura, A., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2015. Lecture Notes in Computer Science(), vol 9222. Springer, Cham. https://doi.org/10.1007/978-3-319-22979-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-22979-9_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-22978-2

  • Online ISBN: 978-3-319-22979-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics