Abstract
Autobiographical memory (AM) refers to the organisation of one’s experience into a coherent narrative. The exact neural mechanisms responsible for the manifestation of AM in humans are unknown. On the other hand, the field of psychology has provided us with useful understanding about the functionality of a bio-inspired synthetic AM (SAM) system, in a higher level of description. This paper is concerned with a top-down approach to SAM, where known components and organisation guide the architecture but the unknown details of each module are abstracted. By using Bayesian latent variable models we obtain a transparent SAM system with which we can interact in a structured way. This allows us to reveal the properties of specific sub-modules and map them to functionality observed in biological systems. The top-down approach can cope well with the high performance requirements of a bio-inspired cognitive system. This is demonstrated in experiments using faces data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Damianou, A., Lawrence, N.: Deep Gaussian processes. Proceedings of the 16th International Workshop on A.I. and Statistics (AISTATS), pp. 207–215 (2013)
Evans, M.H., Fox, C.W., Prescott, T.J.: Machines learning - towards a new synthetic autobiographical memory. In: Duff, A., Lepora, N.F., Mura, A., Prescott, T.J., Verschure, P.F.M.J. (eds.) Living Machines 2014. LNCS, vol. 8608, pp. 84–96. Springer, Heidelberg (2014)
Pouget, A., Beck, J.M., Ma, W.J., Latham, P.E.: Probabilistic brains: knowns and unknowns. Nature Neuroscience 16(9), 1170–1178 (2013)
Rojas, R.: Neural networks: a systematic introduction. Springer Science & Business Media (1996)
Rasmussen, C.E., Williams, C.K.I.: Gaussian processes for machine learning. MIT Press, Cambridge (2006)
Lawrence, N.D.: Probabilistic non-linear principal component analysis with Gaussian process latent variable models. Journal of Machine Learning Research 6, 1783–1816 (2005)
Bengio, Y., LeCun, Y.: Tutorial on Learning Deep Architectures. Videlectures.net, June 2009. http://videolectures.net/icml09_bengio_lecun_tldar/
Nielsen, M. A.: Neural Networks and Deep Learning. Determination Press (2015)
Bishop, C. M.: Pattern Recognition and Machine Learning. Springer-Verlag (2006). ISBN 0387310738
Damianou, A., Ek, C.H., Titsias, M., Lawrence, N.: Manifold relevance determination. Proceedings of the 29th International Conference on Machine Learning (ICML), pp. 145–152. omnipress, New York (2012)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Pointeau, G., Petit, M., Dominey, P.F.: Embodied simulation based on autobiographical memory. In: Lepora, N.F., Mura, A., Krapp, H.G., Verschure, P.F.M.J., Prescott, T.J. (eds.) Living Machines 2013. LNCS, vol. 8064, pp. 240–250. Springer, Heidelberg (2013)
Pointeau, G., Petit, M., Dominey, P.F.: Successive Developmental Levels of Autobiographical Memory for Learning Through Social Interaction. IEEE Transactions on Autonomous Mental Development 6, 200–212 (2014)
Damianou, A., Titsias, M., Lawrence, N.: Variational inference for uncertainty on the inputs of Gaussian process models. arXiv preprint, arXiv:1409.2287 (2014)
Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23(6) (2001)
Turk, M., Pentland, A.: Eigenfaces for recognition. Journal of Cognitive Neuroscience 3(1), 71–86 (1991)
Luvizotto, A., Renn-Costa, C., Verschure, P.: A Framework for Mobile Robot Navigation Using a Temporal Population Code. Biomimetic & Biohybrid Systems (2012)
Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36(4), 193–202 (1980)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Damianou, A., Ek, C.H., Boorman, L., Lawrence, N.D., Prescott, T.J. (2015). A Top-Down Approach for a Synthetic Autobiographical Memory System. In: Wilson, S., Verschure, P., Mura, A., Prescott, T. (eds) Biomimetic and Biohybrid Systems. Living Machines 2015. Lecture Notes in Computer Science(), vol 9222. Springer, Cham. https://doi.org/10.1007/978-3-319-22979-9_28
Download citation
DOI: https://doi.org/10.1007/978-3-319-22979-9_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-22978-2
Online ISBN: 978-3-319-22979-9
eBook Packages: Computer ScienceComputer Science (R0)