Skip to main content

The Role of Ago2 in microRNA Biogenesis: An Investigation of miR-21

  • Conference paper
  • First Online:
Information Processing in Cells and Tissues (IPCAT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9303))

  • 660 Accesses

Abstract

Research into the biology of microRNAs (miRNA) continues to expand rapidly. As a result, their abundance and importance in cellular regulation and disease states, also continues to grow and they are considered master regulators. Despite this greater understanding, key mechanisms regulating global miRNA transcription have remained elusive. This paper addresses a critical issue regarding regulation of miRNA expression. Here, we describe and biochemically characterize a universal regulatory complex that directly binds miRNA genetic loci and regulates transcription of miRNA genes. In addition, our preliminary results provide evidence that miRNA-induced Ago2 binding can result in positive post-transcriptional regulation of many important primary miRNAs. Using chromatin immuno-precipitation (ChIP) assays, our results demonstrate that the human miRNA binding protein Argonaute 2 (Ago2) associates with endogenous promoter DNA from each of the important human miRNA genes investigated to date. Additionally, our data shows a robust, direct interaction between mature miR-21 directed Ago2 and a miR-21 promoter DNA sequence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Finnegan, E.F., Pasquinelli, A.E.: MicroRNA biogenesis: regulating the regulators. Crit. Rev. Biochem. Mol. Biol. 48(1), 51–68 (2013)

    Article  Google Scholar 

  • Zisoulis, D.G., Kai, Z.S., Chang, R.K., Pasquinelli, A.E.: Autoregulation of microRNA biogenesis by let-7 and Argonaute. Nature 486(7404), 541–544 (2012)

    Google Scholar 

  • Ketting, R.F.: The many faces of RNAi. Dev. Cell 20(2), 148–161 (2011)

    Article  Google Scholar 

  • Lee, I., Ajay, S.S., Yook, J.I., et al.: New class of microRNA targets containing simultaneous 5’-UTR and 3’-UTR interaction sites. Genome Res. 19(7), 1175–1183 (2009)

    Article  Google Scholar 

  • Yang, J.S., Lai, E.C.: Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates. Cell Cycle 9(22), 4455–4460 (2010)

    Article  Google Scholar 

  • Kadera, B.E., Li, L., Toste, P.A., et al.: MicroRNA-21 in pancreatic ductal adenocarcinoma tumor-associated fibroblasts promotes metastasis. PLoS ONE 8(8), e71978 (2013)

    Article  Google Scholar 

  • Hong, L., Han, Y., Zhang, Y., et al.: MicroRNA-21: a therapeutic target for reversing drug resistance in cancer. Expert Opin. Ther. Targets 17(9), 1073–1080 (2013)

    Article  Google Scholar 

  • Jardin, F., Figeac, M.: MicroRNAs in lymphoma, from diagnosis to targeted therapy. Curr. Opin. Oncol. 25(5), 480–486 (2013)

    Article  Google Scholar 

  • Baer, C., Claus, R., Plass, C.: Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res. 73(2), 473–477 (2013)

    Article  Google Scholar 

  • Kumarswamy, R., Volkmann, I., Thum, T.: Regulation and function of miRNA-21 in health and disease. RNA Biol. 8(5), 706–713 (2011)

    Article  Google Scholar 

  • Niu, J., Shi, Y., Tan, G., et al.: DNA damage induces NF-kappaB-dependent microRNA-21 up-regulation and promotes breast cancer cell invasion. J. Biol. Chem. 287(26), 21783–21795 (2012)

    Article  Google Scholar 

  • Ruan, Q., Wang, T., Kameswaran, V., et al.: The microRNA-21-PDCD4 axis prevents type 1 diabetes by blocking pancreatic beta cell death. Proc. Natl. Acad. Sci. USA 108(29), 12030–12035 (2011)

    Article  Google Scholar 

  • Kruger, J., Rehmsmeier, M.: RNA hybrid: microRNA target prediction easy, fast and flexible. Nucleic Acids Res. 34, W451–W454 (2006). (Web Server issue)

    Article  Google Scholar 

  • Nissan, T., Parker, R.: Computational analysis of miRNA-mediated repression of translation: implications for models of translation initiation inhibition. RNA 14(8), 1480–1491 (2008). doi:10.1261/rna.1072808

    Article  Google Scholar 

  • Djuranovic, S., Nahvi, A., Green, R.: A parsimonious model for gene regulation by miRNAs. Science 331(6017), 550–553 (2011)

    Article  Google Scholar 

  • Hobert, O.: Gene regulation by transcription factors and microRNAs. Science 319(5871), 1785–1786 (2008)

    Article  Google Scholar 

  • Papadopoulos, G.L., et al.: DIANA-mirPath: integrating human and mouse microRNAs in pathways. Bioinformatics 25(15), 1991–1993 (2009)

    Article  Google Scholar 

  • Asangani, I.A., et al.: MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27(15), 2128–2136 (2008)

    Article  Google Scholar 

  • Frankel, L.B., et al.: Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J. Biol. Chem. 283(2), 1026–1033 (2008)

    Article  Google Scholar 

  • Roy, S., et al.: MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res. 82, 21–29 (2009)

    Article  Google Scholar 

  • Hinton, A., Hunter, S., Reyes, G., Fogel, G.B., King, C.C.: From pluripotency to islets: miRNAs as critical regulators of human cellular differentiation. Adv. Genet. 79, 1–34 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

Funding for these studies was provided by the Larry L. Hillblom Foundation (CCK) and the California Institute for Regenerative Medicine (CIRM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles C. King .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fogel, G.B., Lopez, A.D., Kai, Z., King, C.C. (2015). The Role of Ago2 in microRNA Biogenesis: An Investigation of miR-21. In: Lones, M., Tyrrell, A., Smith, S., Fogel, G. (eds) Information Processing in Cells and Tissues. IPCAT 2015. Lecture Notes in Computer Science(), vol 9303. Springer, Cham. https://doi.org/10.1007/978-3-319-23108-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23108-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23107-5

  • Online ISBN: 978-3-319-23108-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics