Skip to main content

Automated Fast Marching Method for Segmentation and Tracking of Region of Interest in Scintigraphic Images Sequences

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9257))

Abstract

This article introduces an efficient method that combines the advantages of Fast Marching Method (FMM) in conjunction with Harris corner descriptor. An application of Dynamic Renal Scintigraphy imaging has been chosen and a new approach has been applied to see its ability to have a high accuracy of Region Of Interest (ROI) segmentation and tracking in scintigraphic images sequences. The introduced system starts with an image processing algorithm to enhance the contrast of the input images.

This is followed by the segmentation phase which consists of an automated algorithm. Finally, the ROI tracking phase was described.

To evaluate the performance of the presented approach, we present tests on synthetic and real images are presented.

The experimental results obtained show that the effectiveness and performance of the proposed system is satisfactory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pretorius, P.H., Fung, L.C.T., Schell, C.P., Nishinaka, K., Groiselle, C.J., Glick, S.J., Narayanan, M.V., King, M.A.: Dynamic and static tomographic renal coincidence imaging with a gamma camera using Rb-82: a feasibility study. IEEE Transactions on Nuclear Science 49, 5 (2002)

    Article  Google Scholar 

  2. Caglar, M., Gedik, G.K., Karabulut, E.: Differential renal function estimation by dynamic renal scintigraphy: influence of background definition and radiopharmaceutical. Nuclear Medicine Communications, 1002–5 (November 2008)

    Google Scholar 

  3. Prigent, A., Cosgriff, P., Piepsz, A., Rehling, M., Rutland, M., Taylor, A.: Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: International Consensus Committee from the Scientific Committee of Radionuclides in Nephrourology. Seminars in Nuclear Medicine, 146–159 (April 1999)

    Google Scholar 

  4. Hu, Grossberg and Mageras,Survey of Recent Volumetric Medical Image Segmentation Techniques, 2009

    Google Scholar 

  5. Khalifa, N., Ettaeib, S., Wahabi, Y., Hamrouni, K.: Left Ventricle Tracking in Isotopic Ventriculography Using Statistical Deformable Models. Int. Arab J. Inf. Technol, 213–222 (2010)

    Google Scholar 

  6. White, D.R.R., Sampson, W.F.D., Macleod, M.A., Pilkington, J.B.: An assessment of two methods for generating automatic regions of interest. Nuclear Medicine Communications, 1005 (1998)

    Google Scholar 

  7. Aribi, Y., Wali, A., Hamza, F., Alimi, A.M., Guermazi, F.: Analysis of scintigraphic renal dynamic studies: an image processing tool for the clinician and researcher. In: Hassanien, A.E., Salem, A.-B.M., Ramadan, R., Kim, T.-h. (eds.) AMLTA 2012. CCIS, vol. 322, pp. 267–275. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Rahmatpour, M., Rajabi, H., Sardari, D., Babapour, F., Ahmadi, S.: Semi-Automation of renal region of interest in renography images by thresholding and edge detection. Romanian Reports in Physics, 127–132 (2014)

    Google Scholar 

  9. Kaur, J., Jindal, A.: Segmentation Algorithms for Thyroid Scintigraphy Images. IJCST, 3 (2012)

    Google Scholar 

  10. Hraiech, N., Weinland, D., Hamrouni, K.: An active contour model based on splines and separating forces to detect the left ventricle in scintigraphic images. In: 2nd International Conference on Machine Intelligence, ACIDCA-ICMI 2005, November 2005

    Google Scholar 

  11. Kaur, J., Hannequin, P., Liehn, J.C., Valeyre, J.: Cluster analysis for automatic image segmentation in dynamic scintigraphies. Nucl. Med. Commun., 383–393 (1990)

    Google Scholar 

  12. Ståhl, D., Åström, K., Overgaard, N.C., Landgren, M., Sjöstrand, K., Edenbrandt, L.: Automatic compartment modelling and segmentation for dynamical renal scintigraphies. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 557–568. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Siogkas, G.K., Dermatas, E.S.: Automating Medical Diagnosis in Renal Scintigrams using RBF Networks. First International Conference From Scientific Computing to Computational Engineering (2004)

    Google Scholar 

  14. Marcuzzo, M., Masiero, P.R., Scharcanski, J.: Quantitative parameters for the assessment of renal scintigraphic images. In: 29th Annual International Conference of the IEEE. EMBS 2007, pp. 3438–3441. Engineering in Medicine and Biology Society (2007)

    Google Scholar 

  15. Aribi, Y., Wali, A., Alimi, A.M.: An intelligent system for renal segmentation. In: IEEE 15th International Conference on e-Health Networking, Applications Services (Healthcom), pp. 11–15 (2013)

    Google Scholar 

  16. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. In: Proceedings of the National Academy of Science, pp. 1591–1595 (1996)

    Google Scholar 

  17. Moravec, H.P.: Obstacle avoidance and navigation in the real world by a seeing robot rover. Ph.D. thesis, Stanford, CA, USA (1980)

    Google Scholar 

  18. Sethian, J., Adalsteinsson, D.: An overview of level set methods for etching, deposition, and lithography development. IEEE Transactions on Semiconductors Manufacturing 10(1), 167–184 (1997)

    Article  MathSciNet  Google Scholar 

  19. Dice, L.R.: Measures of the Amount of Ecologic Association Between Species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  20. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15(9), 850–863 (1993)

    Article  Google Scholar 

  21. Aribi, Y., Hamza, F., Wali, A., Alimi, M.A., Guermazi, F.: An Automated System for the Segmentation of Dynamic Scintigraphic Images. Applied Medical Informatics 34(2), 1–12 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yassine Aribi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Aribi, Y., Wali, A., Alimi, A.M. (2015). Automated Fast Marching Method for Segmentation and Tracking of Region of Interest in Scintigraphic Images Sequences. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9257. Springer, Cham. https://doi.org/10.1007/978-3-319-23117-4_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23117-4_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23116-7

  • Online ISBN: 978-3-319-23117-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics