Skip to main content

Nano Communication Device with Embedded Molecular Films: Effect of Electromagnetic Field and Dipole Moment Dynamics

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (ruSMART 2015, NEW2AN 2015)

Abstract

The communication among molecular networks may be specifically realized by nanomechanical, acoustic, and electromagnetic fields and molecular transport. Here, experimental and theoretical studies of peptide and protein films and single molecules in static and radiofrequency electromagnetic fields are reported. Impedance (dielectric) electrochemical spectroscopy revealed nonlinear properties of glycine, alanine and albumen films in the external electromagnetic field in frequency range 0.5–100 MHz. Computer “all atom” simulation allows one to calculate the nanoelectromagnetic field of molecular systems and to evaluate the self-assembled supramolecular architectures. Theoretical studies revealed the dipole moment dynamics of polyalanine peptides. Further, we combine both approaches, thus providing a prediction model of nanoelectromagnetic field generation, and molecular transportation/communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Phadke, R.S.: Biomolecular electronics in the twenty-first century. Applied Biochemistry and biotechnology. 96, 279–286 (2001)

    Article  Google Scholar 

  2. Offenhäusser, A., Rinaldi, R.: Nanobioelectronics– for Electronics, Biology, and Medicine. Springer, Canada (2009)

    Book  Google Scholar 

  3. Akyildiz, I.F., Jornet, J.M.: Electromagnetic wireless nanosensor networks. Nano Communication Networks 1, 3–19 (2010)

    Article  Google Scholar 

  4. Jiang, C., Chen, Y., Liu, K.J.R.: Nanoscale molecular communication networks: a game-theoretic perspective. EURASIP Journal on Advances in Signal Processing 5, 1–15 (2015)

    Google Scholar 

  5. Akyildiz, I.F., Jornet, J.M., Hana, C.: Terahertz band: Next frontier for wireless communications. Physical Communication 12, 16–32 (2014)

    Article  Google Scholar 

  6. Wua, C.C., Kua, B.C., Koa, C.H., et al.: Electrochemical impedance spectroscopy analysis of A-beta (1-42) peptide using a nanostructured biochip. Electrochimica Acta. 134, 249–257 (2014)

    Article  Google Scholar 

  7. Biela, A., Watkinson, M., Meier, U., et al.: Disposable MMP-9 sensor based on the degradation of peptide cross-linked Hydrogel films using electrochemical impedance spectroscopy. Biosensors and Bioelectronic 1 (2015)

    Google Scholar 

  8. Nakanishi, M., Sokolov, A.P.: Protein dynamics in a broad frequency range: Dielectric spectroscopy studies. J. Non-Crystalline Solids 407, 478–485 (2015)

    Article  Google Scholar 

  9. Kelly, C.M., Northey, T., Ryan, K., Brooks, B.R., Kholkin, A.L., Rodrigueza, B.J., Buchetea, N.V.: Conformational dynamics and aggregation behavior of piezoelectric diphenylalanine peptides in an external electric field. Biophysical Chemistry 196, 16–24 (2015)

    Article  Google Scholar 

  10. Macdonald, J.R.: Impedance Spectroscopy Theory, Experiment, and Applications (2005)

    Google Scholar 

  11. Kremer, F., Schonhals, A., Luck, W.: Broadband Dielectric Spectroscopy. Springer-Verlag (2002)

    Google Scholar 

  12. Hanwell, M.D., Curtis, D.E., et al.: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Chem. Informatics 4, 17 (2012)

    Google Scholar 

  13. Humphrey, W., Dalke, A., et al.: VMD: visual molecular dynamics. J. Molec. Graphics 14, 33–38 (1996)

    Article  Google Scholar 

  14. Phillips, J.C., Braun, R., et al.: Scalable Molecular Dynamics with NAMD. Journal of Computational Chemistry 26, 1781–1802 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Velichko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Velichko, E., Zezina, T., Cheremiskina, A., Tsybin, O. (2015). Nano Communication Device with Embedded Molecular Films: Effect of Electromagnetic Field and Dipole Moment Dynamics. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. ruSMART NEW2AN 2015 2015. Lecture Notes in Computer Science(), vol 9247. Springer, Cham. https://doi.org/10.1007/978-3-319-23126-6_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23126-6_71

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23125-9

  • Online ISBN: 978-3-319-23126-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics