Skip to main content

Nano-device with an Embedded Molecular Film: Mechanisms of Excitation

  • Conference paper
  • First Online:
Internet of Things, Smart Spaces, and Next Generation Networks and Systems (ruSMART 2015, NEW2AN 2015)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 9247))

Abstract

Mechanisms of a fast energetic excitation in a nano-device with an embedded molecular film are discussed herein. Excited intermolecular transport of protons, electrons and other quantum carriers could create communication channels inside a molecular network. We suggest that such channels could be analyzed by means of electron capture dissociation reactions of a protonated peptide, protein or a DNA to reveal the intramolecular pathways of mobile carrier motion in an isolated dehydrated molecule. In general, initial processing stage in a nano-device with a molecular film consists of a target direct activation followed by energy transport from target excitations into a surface molecular film which produces an indirect activation. We analyzed selected indirect molecular excitations produced by a metal or a semiconductor target directly activated by means of a radiofrequency electromagnetic field. Further processing stage after the activation consists of molecular relaxation and transportation phenomena providing nano-electromagnetic field, molecular flow, and communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Offenhäusser, A., Rinaldi, R.: Nanobioelectronics - for Electronics, Biology and Medicine, p. 337. Springer–Verlag (2009)

    Google Scholar 

  2. Akuildiz, I.F., Jornet, J.M.: Electromagnetic wireless nanosensor networks. Nanocommunication networks 1, 3–19 (2010)

    Google Scholar 

  3. Heath, J.R., Ratner, M.A.: Molecular Electronics. Physics Today, 43–49 (May 2003)

    Google Scholar 

  4. Ben Hamidane, H., He, H., Tsybin, O.Y., Emmet, M., Hendrikson, C.L., Marshall, A.G., Tsybin, Y.O.: Periodic Sequence Distribution of Product Ion Abundances in Electron Capture Dissociation of Amphipathic Peptides and Proteins. Journal Am. Soc. Mass. Spectrom. 20(6), 1182–1192 (2009)

    Article  Google Scholar 

  5. Ben Hamidane, H., Chiappe, D., Hartmer, R., Vorobyev, A., Moniatte, M., Tsybin, Y.O.: Electron Capture and Transfer Dissociation: Peptide Structure Analysis at Different Ion Internal Energy Levels. J. Am. Soc. Mass Spectrom. 20(4), 567–575 (2009)

    Article  Google Scholar 

  6. Winkler, J.R.: Electron tunneling pathways in proteins. Current Opinion in Chemical Biology 4, 192–198 (2000)

    Article  Google Scholar 

  7. Symons, M.C.R., Taiwo, F.A., Svistunenko, D.A.: Electron Paramagnetic Resonance Studies of Hole Mobility and Localisation in Haemoglobin. J. Chem. Soc. Faraday Trans. 89(16), 3071–3073 (1993)

    Article  Google Scholar 

  8. MacDonald, B.I., Thachuk, M.: Gas-phase proton-transfer pathways in protonated histidyglycine. Rapid Commun. Mass Spectrom. 22, 2946–2954 (2008)

    Article  Google Scholar 

  9. Lewis, F.D., Liu, X., Liu, J., Miller, S.E., Hayes, R.T., Wasielewski, M.R.: Direct measurement of hole transport dynamics in DNA. Nature 406, 51–53 (2000)

    Article  Google Scholar 

  10. Berlin, Y.A., Burin, A.L., Ratner, M.A.: Charge Hopping in DNA. J. Am. Chem. Soc. 123, 260–268 (2001)

    Article  Google Scholar 

  11. Schlag, E.W., Sheu, S.Y., Yang, D.Y., Selzle, H.L., Lin, S.H.: Distal charge transport in peptides. Angewandte Chemie-International Edition. 46(18), 3196–3210 (2007)

    Article  Google Scholar 

  12. Pouthier, V., Tsybin, Y.O.: Amide-I relaxation-induced hydrogen bond distortion: an intermediate in electron capture dissociation mass-spectrometry of alpha-helical peptides? Journal of Chemical Physics 129, 095106 (2008)

    Article  Google Scholar 

  13. Tsybin, O., Mishin, M.: Ion desorption from skin-current induced metal surface. ZTF Lett. 22(4), 21–24 (1996). (In Russian)

    Google Scholar 

  14. Zamiatin, A.V., Tsybin, O.Y.: Surface skin-current activated emission of electrons and ions. In: 20th International Workshop on Beam Dynamics and Optimization, BDO 2014, art. no. 6890100 (2014)

    Google Scholar 

  15. Xie, A., van der Meer, L., Hoff, W., Austin, R.H.: Long-Lived Amide I Vibrational Modes in Myoglobin. Phys. Rev. Lett. 84(23), 5435–5438 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Tsybin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Tsybin, O. (2015). Nano-device with an Embedded Molecular Film: Mechanisms of Excitation. In: Balandin, S., Andreev, S., Koucheryavy, Y. (eds) Internet of Things, Smart Spaces, and Next Generation Networks and Systems. ruSMART NEW2AN 2015 2015. Lecture Notes in Computer Science(), vol 9247. Springer, Cham. https://doi.org/10.1007/978-3-319-23126-6_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23126-6_72

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23125-9

  • Online ISBN: 978-3-319-23126-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics