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Direct Transformation Techniques
for Compressed Data:
General Approach and Application Scenarios

Patrick Damme®) | Dirk Habich, and Wolfgang Lehner

Database Systems Group, Technische Universitdt Dresden, 01062 Dresden, Germany
{Patrick.Damme,Dirk.Habich,Wolfgang.Lehner}@tu-dresden.de

Abstract. Lightweight data compression techniques like dictionary or
run-length compression play an important role in main memory database
systems. Having decided for a compression scheme for a dataset, the
transformation to another scheme is very inefficient today. The common
approach works as follows: First, the compressed data is decompressed
using the source decompression algorithm resulting in the materialization
of the raw data in main memory. Second, the compression algorithm of
the destination scheme is applied. This indirect way relies on existing
algorithms, but is very inefficient, since the whole uncompressed data has
to be materialized as an intermediate step. To overcome these drawbacks,
we propose a novel approach called direct transformation, which avoids
the materialization of the whole uncompressed data. Our techniques are
cache optimized to reduce necessary data accesses. Moreover, we present
application scenarios, where such direct transformations can be efficiently
applied.

Keywords: Lightweight data compression - Main memory database
systems - Efficient algorithms

1 Introduction

As a consequence, e.g., of the developments in the main memory domain, mod-
ern database systems are very often in the position to store their entire data in
main memory. Aside from increased main memory capacities, a further driver
for in-memory database systems was the shift to a column-oriented storage for-
mat in combination with compression techniques. Using both mentioned soft-
ware concepts, large datasets can be held in main memory with a low memory
footprint. That means, modern in-memory database systems have to manage
and process large compressed datasets. For compression, lightweight compression
techniques have been established in this domain [1,3,5,6,9]. These lightweight
techniques provide a good compression rate and they are less CPU intensive than
heavyweight approaches like Huffman [4]. Examples of lightweight compression
techniques are: dictionary compression [1,9], run-length encoding [1,6] and null
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suppression [1,6]. Moreover, recent research in the field of lightweight compres-
sion techniques increases the performance by the utilization of parallelization
concepts like SIMD capabilities of modern CPUs [5,7,8].

Based on the availability of various different lightweight compression schemes,
the complexity of the physical database design increases. That means, for each
column an appropriate compression scheme has to be identified. Abadi et al. [1]
have proposed a decision tree to heuristically decide which compression scheme
to use for a column. As they have shown [1], the optimal lightweight compres-
sion scheme depends on various influencing factors like the number of distinct
values, data locality or access pattern. However, these influencing factors usu-
ally change over time. To react in an appropriate way on the physical database
layer, efficient techniques to transform compressed data from one compression
scheme to another are required. To the best of our knowledge, this aspect has
not been considered before for lightweightly compressed data. Therefore, this
paper primarily focuses on this aspect.

A naive transformation approach would be the indirect way from a source to
a destination compression scheme. First, the compressed data is decompressed
using the source decompression algorithm resulting in the materialization of the
raw data in main memory. Second, the compression algorithm of the destination
scheme is applied. This indirect way relies on existing algorithms and can be
realized for arbitrary pairs of source and destination compression schemes. How-
ever, the naive approach is very inefficient and the whole uncompressed data
has to be materialized as an intermediate step. To overcome these drawbacks,
we contribute a novel direct transformation approach in this paper:

— Our novel direct transformation techniques convert compressed data in scheme
X to another compression scheme Y in a direct and interleaved way.

— We avoid the materialization of the whole uncompressed data as in the naive
approach. Furthermore, our direct techniques are cache optimized to reduce
necessary memory accesses.

— We introduce different direct transformation algorithms in detail.

— In our evaluation, we show that our direct transformation techniques outper-
form the indirect, classical way to convert the compression scheme.

— Furthermore, we present different application scenarios for our direct trans-
formation techniques.

The remainder of the paper is organized as follows: The next section briefly
reviews related work in the context of lightweight compression techniques. In
Sect. 3, we describe transformation approaches in general. Then, we present dif-
ferent examples of direct transformation techniques in Sect.4. Section5 shows
the results of our empirical evaluation. Before we conclude the paper in Sect. 7,
we highlight different applications requiring efficient transformation techniques.

2 Related Work

The field of lightweight compression has been studied for decades. The main
archetypes of lightweight compression techniques are dictionary compression
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(DICT) [1,9], delta coding (DELTA) [5,6], frame-of-reference (FOR) [3,9], null
suppression (NS) [1,6], and run-length encoding (RLE) [1,6]. DICT replaces
each value by its unique key. DELTA and FOR represent each value as the
difference to its predecessor respectively a certain reference value. These three
well-known techniques try to represent the original data as a sequence of small
integers, which is then suited for actual compression using a scheme from the
family of NS. NS is the most well-studied kind of lightweight compression. Its
basic idea is the omission of leading zeros in small integers. Finally, RLE tackles
uninterrupted sequences of occurrences of the same value, so-called runs. In its
compressed format, each run is represented by its value and length, i.e., by two
uncompressed integers. Therefore, the compressed data is a sequence of such
pairs (see Fig.1).

4-Gamma -~ uncompr. — 4-Wise NS uncompr. —> RLE

1
(28D 50 piock § 15 block :
010100100011 01]23] « 105\ 1 [L2]34]56]78
011:.].1000101 45| 5 11, 1 1[12[34]56]78
10110(:1[00000110 01]06] 2 10.| [45[01[23[AE] 1 [12[34]56]78] | [L2[34]56]78]
101; 105 01]06] ' [12]34]56]78] [00[00[00[05
: OAl 112[ 2C[OB[OAIFF] ' [12[34]56[78|) [00|AB|CDIEF]
[:100000:1[00000000] 0B 811, 0D ! [00ABICDIEF] % [00[00[00[03
shared prefixes 2C| 5 112J :OOAECD EF| | = addresses
0D & 11, , [00IABICDIEF] ) [z grow this way|

Fig. 1. Examples of some uncompressed data and its representations in the described
formats of NS (left) and RLE (right). The data of 4-Gamma is given in binary, whereby
gray dots mean leading zero bits. All other data is presented in hexadecimal notation.

In recent years, research in the field of lightweight compression has mainly
focussed on the efficient implementation of these schemes on modern hardware.
For instance, Zukowski et al. [9] introduced the paradigm of patched coding,
which especially aims at the exploitation of pipelining in modern CPUs. Another
promising direction is the vectorization of compression techniques by using SIMD
instruction set extensions such as SSE and AVX. Numerous vectorized techniques
have been proposed, e.g., in [5,7,8]. The techniques 4-Wise Null Suppression and
4-Gamma Coding introduced by Schlegel et al. in [7] are especially important to
understand this paper.

4-Wise NS eliminates leading zeros at byte level and processes blocks of four
values at a time. During compression, the number of leading zero bytes of each
of the four values is determined. This yields four 2-bit descriptors, which are
combined to an 8-bit compression mask. The compression of the values is done
by a SIMD byte permutation bringing the required lower bytes of the values
together. This requires a permutation mask being looked up in an offline-created
table using the compression mask as a key. After the permutation, the code
words have a horizontal layout, i.e., code words of subsequent values are stored
in subsequent memory locations. Thus, the compressed data is a sequence of
compressed blocks (see Fig. 1). The decompression simply reads the compression
mask, looks up the appropriate permutation mask which reinserts the leading
zeros bytes and applies the permutation.
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4-Gamma eliminates leading zeros at bit level and processes blocks of four
values at a time. The compression algorithm first determines the minimum num-
ber of bits required to represent the highest of the four values. This number is
the shared prefix of the block. All values are represented by that many bits and
stored using a vertical layout, i.e., each of the four code words is stored to a sep-
arate memory word. This requires shift and logical operations, which are done
using vectorized instructions. Finally, the unary representation of the shared
prefix is stored to a separate memory location. Again, the compressed data is a
sequence of compressed blocks (see Fig.1). The decompression determines the
length of the shared prefix and applies appropriate logical and shift operations
to the compressed block in order to extract the original values.

3 Transformation Algorithms in General

The aim of transformation algorithms is to change the compressed format some
data is represented in. Therefore, the transformation takes data represented in
its source format as input and outputs the representation of the data in its desti-
nation format. Note that this is a lossless process, i.e., after the transformation,
the original uncompressed data can still be obtained by applying the decompres-
sion algorithm of the destination format. We differentiate between two different
types of transformations: indirect and direct, which are described next. For our
novel direct transformation, we introduce two variants in Sect. 3.2.

3.1 Indirect Vs. Direct Transformations

For the implementation of a transformation, two different approaches exist: (1)
indirect transformations and (2) direct transformations.

Indirect transformations constitute a naive approach. First, the compressed
input data is decompressed using the decompression algorithm belonging to the
source format. In this case, the entire uncompressed data is materialized in main
memory. Finally, the compression algorithm of the destination format is applied
to the uncompressed data in order to obtain the representation of the data in
the destination format.

Since indirect transformations rely solely on existing compression and decom-
pression algorithms, they can easily be implemented for arbitrary pairs of source
and destination formats. However, they suffer from a major inefficiency: The
materialization of the uncompressed data as an intermediate step. This requires
a lot of expensive load and store operations. Furthermore, it results in a subopti-
mal cache utilization: when the uncompressed data is read by the recompression,
it is not in the caches anymore.

In order to perform transformations efficiently, we propose to employ direct
transformations. The decisive criterion for direct transformations is that no
uncompressed data is written to main memory. Ideally, all intermediate data
of a transformation can reside in CPU registers or at worst in the L1 cache. This
allows for high-speed access to these intermediate data. We expect considerable
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speed ups of direct transformations compared to indirect ones. Our experimental
results presented in Sect. 5.1 prove this expectation correct. Direct transforma-
tions can, for instance, be accomplished by a tightly interleaved execution of
parts of the decompression algorithm of the source format and parts of the com-
pression algorithm of the destination format within the body of a loop iterating
over the input data. Thereby, intermediate stores and loads to and from memory
can be omitted.

We propose to investigate such direct transformations as a new class of algo-
rithms, which is closely related to compression algorithms. Figure 2 again con-
trasts the data flows of indirect and direct transformations.

r
uncompressed

- decompression

compressed (src. format)
(src. format)

compression -

r
uncompressedm (dest. format) compressed
(dest. format)

] direct ]
compressed  transformation compressed
(src. format) (dest. format)

Fig.2. A comparison of the data flows of indirect (top) and direct (bottom)
transformations.

3.2 Precise Vs. Imprecise Transformations

In the literature there exists a multitude of compressed formats and associated
compression algorithms. Whereas a compressed format specifies the structure of
the compressed data, the respective compression algorithm tells how to make
use of this structure in order to obtain the best compression rate possible in the
given format. Hence, the output of the compression of the destination format
could be considered to be a reference for the transformation.

If a transformation algorithm produces a result which equals the result of
the compression of its destination format bit by bit, we call it a precise trans-
formation. Indirect transformations are always precise, since they actually use
the compression algorithm of their destination format. On the other side, direct
transformations do not necessarily need to be precise.

For certain combinations of source and destination formats this bitwise equal-
ity might require a disproportionately high effort. At the same time, data rep-
resented in a certain compressed format does not need to use the size reduction
potential of the format to its maximum extent. As an example, consider run-
length encoding (RLE) [1,6], which replaces each run in the uncompressed data
by its value and its length. The uncompressed sequence [7,7,7,7,7,4,4] would
be represented as [(7,5), (4,2)] in a precise way. It could, however, also be rep-
resented as [(7,2),(7,3), (4,2)] and still be decompressable. Making use of this
observation, we introduce a relaxed definition of transformations:
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We call a (direct) transformation imprecise, if its output O satisfies:

1. O is a valid instance of the destination format.

2. There is some valid input data, such that O is not bitwise equal to the output
of the destination format’s compression.

3. An application of the decompression of the destination format to O yields
uncompressed data that is bitwise identical to the uncompressed data that
can be obtained from the output of the respective precise transformation.

The third criterion is especially crucial, since it guarantees that imprecise
transformations are in fact lossless and do not require any changes to the decom-
pression algorithm. Usually, the result of an imprecise transformation has a big-
ger size than that of a precise transformation for the same source and destination
formats with the same input data. We expect that imprecise transformations
might perform better than precise ones for certain pairs of source and destina-
tion formats.

In the following section, we present some of our direct transformation algo-
rithms including some imprecise variants.

4 Example Techniques

Figure 3 provides an overview of all transformation techniques, we have investi-
gated so far.! However, in this paper we present only a selection of these tech-
niques, namely Rle2FourNs, FourNs2Rle, and FourNs2FourGamma covering all
aspects which have to be considered. Currently, we focus on unsigned 32-bit
integers as the data type of the uncompressed data. Our algorithms use vector-
ization through SIMD instructions, since they employ fragments of the vectorized
(de)compression algorithms of the involved formats.

I D compressed
- format

OrderPreservingDict

4-Wise NS Q
W
<

N precise direct
AAd transformation
m = . . .
Ch 4 .p imprecise direct

RLE e ! :
- P SimpleDict transformation
\ \

' — - ted i
run length EnCOdlhg/ \dlctlonary compression presented in

4-Gamma

null suppression
)

this paper

Fig. 3. An overview of the transformation techniques investigated by us so far.

! Our source code is downloadable at https://wwwdb.inf.tu-dresden.de/team /staff/

patrick-damme-msc/.
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4.1 Rle2FourNs

The foundation of the direct transformation from the format of RLE to that of 4-
Wise NS is the observation that runs of equal single values in the uncompressed
data yield (shorter) runs of byte-wise equal homogeneous? compressed blocks in
the compressed format of 4-Wise NS.

The transformation algorithm iterates over its RLE-compressed input data
and performs the following steps for each pair of run value and run length:

1. The run value and run length are loaded from the compressed input data.

2. The number of compressed blocks of 4-Wise NS necessary to represent the
run is calculated by dividing the run length by four.

3. One block consisting of four copies of the run value is compressed the same
way 4-Wise NS would do it. Note that this is done only once per run. After
this step, the compressed block resides in a vector register in the CPU, i.e.,
no data is stored to main memory.

4. The compressed block is appended to the output data as often as necessary.
This is done by storing the content of the vector register of the previous step
to memory multiple times, which does not require any load instructions.

In practice, this procedure gets more complicated, since the run length cannot
be assumed to be a multiple of four. In the vicinity of the border between two
adjacent runs as well as at the end of the input buffer, it can be necessary to
process heterogeneous blocks.

For small run values, this approach can be further accelerated. Storing the
compressed block to memory is done using a vectorized store instruction, which
writes 16 bytes of vector register content to memory at once. If the run value
has exactly one effective byte?, then the compressed block including the com-
pression mask spans only five bytes. That is, it fits three times into a 16-byte
vector register. Hence it is possible to store out three compressed blocks at once.
A similar improvement can be made for run values having exactly two effective
bytes. In that case, three copies fit into two vector registers. We implemented
these optimizations by modifying the permutation masks used by 4-Wise NS to
not only permute, but also copy the data within the vector register.

4.2 FourNs2Rle

The direct transformation in the inverse direction, i.e., from the format of 4-Wise
NS to the format of RLE, makes use of the fact that runs of byte-wise equal
homogeneous compressed blocks in the compressed input data mean (longer)
runs of equal single values in the uncompressed format.

The transformation iterates over all compressed blocks of 4-Wise NS in its
input, performing the following steps for each block:

2 We call a block homogeneous, if it contains just one distinct value. Otherwise we call
it heterogeneous.

3 Following Schlegel et al. [7], we use the term effective bits to denote all but the
leading zero bits of a value. The analogous holds for the term effective bytes. By
definition, the value zero also has one effective bit respectively one effective byte.
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1. The compressed block is checked for homogeneity. First, the compression
mask is examined. Only if it indicates that all four values have the same
length, the actual values are compared in the compressed form. If the block
is homogeneous, the algorithm continues with step 2, otherwise with step 4.

2. The number of subsequent occurrences of the compressed block is determined
in the compressed input data, i.e., without decompression. This is done by a
simple loop starting at the first byte of the compressed block in the input
data. In every iteration, it compares one byte to the corresponding byte in
the next block, whose position can be calculated as the block size is known
from the compression mask.

3. The one value is extracted from the compressed block and appended to the
output as a run value once. The run length is obtained by multiplying the
number of subsequent occurrences of the compressed block from the previous
step by four and appended to the output as well. The algorithm proceeds to
the next compressed block and returns to step 1.

4. Since the current compressed block contains more than one distinct value, it
is not of interest if it is repeated. Instead, the single block is decompressed to
a temporary buffer residing in the L1 cache and immediately recompressed
using RLE. The algorithm continues with the next compressed block and
returns to step 1.

Hitherto, this yields only an imprecise transformation, which is given the
name FourNs2RleImprecise. The reason why the produced output might differ
from the output of a direct compression with RLE, is the coarse-grained view on
the data. Runs are only determined at block-level, but in fact, 4-Wise NS might
partition a run in the uncompressed data into up to three parts: The run might
start in a heterogeneous block, run through arbitrarily many homogeneous blocks
and finally end in a heterogeneous block again. What FourNs2Rlelmprecise lacks,
is to stitch these parts together. Doing so, however, causes additional overhead.
Avoiding this, is the justification for the imprecise technique.

4.3 FourNs2FourGamma

The main idea of the transformation from the format of 4-Wise NS to that of
4-Gamma is a temporary decompression of one compressed block of 4-Wise NS
immediately followed by the recompression with 4-Gamma.

The main loop of the algorithm processes each compressed block of 4-Wise
NS in the input data as follows:

1. The 8-bit compression mask is loaded and the respective permutation mask
for decompression as well as the size of the compressed block are looked up
in the tables for the decompression of 4-Wise NS.

2. The decompressing permutation is executed. Note that after this step, the
uncompressed block resides in a vector register and does not need to be stored
to main memory.

8
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3. The shared prefix of 4-Gamma is determined like in the compression of 4-
Gamma, i.e., by computing the maximum number of effective bits via the
number of leading zero-bits of the bitwise OR of the four values. This is done
based on the register contents from the previous step, i.e., without accessing
memory. The calculation requires four extractions of a 32-bit element from
a vector register, three scalar bitwise OR operations, and one invocation of a
scalar count-leading-zeros operation.

4. The four values are shifted to right and stored to the values section of the
output data, while the shared prefix is stored to the prefix section.

The precise calculation of the maximum number of effective bits of the
four uncompressed values in step3 requires many instructions and therefore
costs a lot of time. In order to reduce these costs, the imprecise transformation
FourNs2FourGammalmprecise relaxes the strict interpretation of the shared pre-
fix. It approximates the maximum number of effective bits of the four values by
the maximum number of effective bytes increased by eight times. The crucial
point is that the latter number can directly be obtained from the 8-bit compres-
sion mask of 4-Wise NS by looking it up in a table indexed with the compression
mask. This table has a total size of 256 bytes and is created offline. Note that
the output data produced this way is perfectly decompressable by 4-Gamma
without any changes done to its decompression algorithm. Figure 4 contrasts the
result of the precise and the imprecise transformation for an example block.

4-Gamma precise transformation 4-Wise NS imprecise transformation 4-Gamma
ﬂ next block } ,Eb& next block }
d 010 2COBOA1FF % 010
X: 011 011
X101100 % 101100
)(E .
[.X100000] +— addresses \ X110000000]
shared prefixes < grow this way shared prefixes

Fig.4. A comparison of the outputs of the precise and the imprecise variant of the
direct transformation FourNs2FourGamma.

5 Experimental Evaluation

We implemented our direct transformation algorithms as well as the corre-
sponding (de)compression algorithms in C++ and compiled them with g++ 4.8
using the optimization flag -03. Our experiments were conducted on a machine
equipped with an Intel Core i7-4710MQ at 2.5 GHz and 16 GB of RAM. The L1
data, 1.2 and L3 caches have a capacity of 32 KB, 256 KB and 6 MB, respectively.

In all experiments, the underlying uncompressed data consisted of 100 M
unsigned 32-bit integers. We use synthetic test data in order to be able to freely
specify the properties of the data, especially the distribution of values and the
lengths of runs within the data. We report speeds in terms of million integers
per second (mis), whereby integer refers to an underlying uncompressed value.
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5.1 Indirect Vs. Direct Transformations

To find out if direct transformations reach higher speeds than indirect ones,
we ran both on the same data and measured the required run times. The
(de)compression algorithms employed in the indirect transformations are vec-
torized and hand-tuned to allow a fair comparison. The results are presented in
Fig. 5. The top row of diagrams shows the speeds side by side, while the bottom
row explicitly provides the speed ups.

Rle2FourNs FourNs2RlePrecise FourNs2FourGammaPr.
8,000 700
—d1 d
. - =i
6,000 - — i _ 2000 _ A/M\A/
.2 2 £ 600
B E E
4,000 - -
3 H 1,000 g
i 2 500
@ 2,000 @ @
SN TN T Tl
AN - NS
~~~~~~~~~~~~~~ \
0 0 400
0 200 400 0 200 400 0 10 20 30
avg. run length avg. run length # effective bits
d1 —d1 —d
8 3 1.5
o a o
3 6 B B
E 32 3
$ 4 S S 1.4
a a o)
@ @ o
2 1
1.3
0 200 400 o] 200 400 0 10 20 30
avg. run length avg. run length # effective bits

Fig. 5. Comparison of the presented direct transformations (d) to the indirect ones (i).

The first two columns correspond to the transformations involving RLE.
Here the data was generated such that it contains runs. The values given at the
horizontal axis are the average run lengths. The length of each individual run was
chosen uniformly from the interval avg &+ 2. We show the results of the direct
transformation when all original values have one (d1) or three (d3) effective
bytes each, and of the indirect transformation (i), for which the influence of the
number of effective bytes would not be visible at the scale of the diagrams.

Both directions of the transformation exhibit the same general trends: (1) the
speed increases as the average run length increases, and (2) the more effective
bytes the values have, the lower the maximum speed. Except for very small
average run lengths, the direct transformations outperform the indirect ones,
whereby FourNs2RlePrecise requires run lengths that are a little longer than
Rle2FourNs in order to overtake the indirect transformation. The speed ups
observed reach up to 8.6 and 3.2 for Rle2FourNs and up to 3.2 and 1.4 for
FourNs2RlePrecise, if all values have one respectively three effective bytes.

The third column of Fig.5 provides the results for FourNs2FourGamma-
Precise. In this case, the data was generated such that all values have the same
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number of effective bits, which is given at the horizontal axis. It can clearly
be seen that the direct transformation is faster than the indirect one for all
numbers of effective bits. The speed up achieved is between 1.3 and 1.5, which
is still considerable.

Our experimental results show that direct transformations are much faster
than indirect ones and should thus be employed instead of the latter. We con-
ducted similar experiments for all other direct transformations shown in Fig. 3
and obtained similar results.

5.2 Precise Vs. Imprecise Transformations

In addition to precise transformations, we suggested that it could be faster
to perform imprecise transformations in certain cases. We experimentally com-
pared both variants. The results are given in Fig.6. The top and bottom row
of diagrams are concerned with the precise (pr) and imprecise (im) variants of
FourNs2Rle and FourNs2FourGamma, respectively. The columns report speeds,
speed ups, and compression rates, from left to right.
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Fig. 6. Comparison of the precise transformations (pr) to the imprecise ones (im).

The results show that the imprecise variant of FourNs2Rle is faster than the
precise one only for low average run lengths. A look at the compression rates
of the output of the precise and imprecise transformations reveals the reason.
As expected, the imprecise variant yields a worse compression rate than the
precise one and thus has to store more data. For average run lengths between
about 20 and 100, this difference is most significant. For this reason, the precise
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transformation is clearly faster here. However, this difference in compression
rates becomes negligible for long runs. As a consequence, the speed up of the
imprecise variant converges on 1.0 again. That is, the imprecise variant yields at
least only a slight slow down.

For FourNs2FourGamma we used two different distributions of the original
data: (A) all uncompressed values have the same number = of effective bits,
and (B) the number of effective bits is chosen uniformly from the interval [1, z],
whereby z is the number given at the horizontal axis. In this case, the facts
are much clearer. The imprecise variant significantly outperforms its precise
counterpart for both distributions and all possible xs yielding speed ups between
1.6 and 1.8, although it leads to a worse compression rate of the output.

To sum it up, the experiments revealed that imprecise direct transformations
can indeed be faster then precise ones. However, this is not generally the case
as not all combinations of source and destination formats as well as data char-
acteristics seem to be suited. Still, imprecise transformations remain to be an
interesting concept and will be promising for other transformation techniques.

6 Application Scenarios

In this section, we stress the usefulness of our direct transformation techniques
by presenting two interesting applications requiring efficient transformations.

6.1 Indirect Compression

One possible application of direct transformation techniques is the acceleration
of the actual compression. Assume we want to represent some uncompressed
data in the compressed format Y. In the classical case, i.e., without considering
transformations, there is only one way to achieve this: a direct compression by
applying the compression algorithm of Y to the uncompressed data. However,
also taking transformations into account, there are far more possibilities. We
can, for instance, first apply the compression algorithm of some intermediate
format X and then perform a transformation from the format X to the format
Y. One can trivially see that such an indirect compression can only lead to a
speed up if it employs a direct transformation. This is due to the fact that an
indirect transformation would undo the intermediate compression to the format
X as its first step and thus render it to be pure overhead.

The results presented in Fig.7 prove that such indirect compressions can
indeed outperform direct ones. In the example, the compressed format of 4-
Wise NS was obtained from uncompressed data by either using the compression
algorithm of 4-Wise NS directly (dc) or by the indirection via the format of
RLE (ic). Again, the experiment was run for uncompressed values having one or
three effective bytes each. The difference of the speed of the direct compression
that is subject to the number of effective bytes is negligible at the scale of the
diagrams. While the speed of the direct compression is not affected by the average
run length, the indirect compression gets faster as the run length increases until
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it overtakes the direct one at run lengths of about 50 or 150, reaching speed ups
of up to 1.8 and 1.3 for one or three effective bytes per uncompressed value.

Unsurprisingly, this does not work for all possible indirect compressions. We
conducted the same experiment for the compression to the format of RLE and
to the format of 4-Gamma via the format of 4-Wise NS. Both resulted in slow
downs compared to the direct compression. Nevertheless, indirect compressions
still remain an interesting approach.

2
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T 1,000 ;i 3
9 icl % o5
@ ic3
- - de
0 0
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Fig. 7. Comparison of the direct compression (dc) to the format of 4-Wise NS to the
indirect one (ic) via the format of RLE.

6.2 Transformations During Query Processing

Another, even more promising application for direct transformations, is the
change of the compressed format during query processing. Currently, a shift
towards in-memory database systems as the prevailing technology for analytical
data processing is taking place. These systems keep all their data in main mem-
ory, so accessing intermediate results is as expensive as accessing the base data.
Thus, intermediate results must be treated efficiently. One way to do so, is to
compress not only the base data, but also intermediate results.

Compressed data offers advantages, such as reduced transfer times, better
cache utilization, and a higher TLB hit rate. Moreover, many plan operators can
directly process compressed data without decompression. On the other side, com-
pression has two major disadvantages. Firstly, it introduces a certain computa-
tional overhead, which makes efficient implementations crucial. Recent research
[5,7-9] has proven that this is manageable. Secondly, a compressed format has
to be chosen. Approaches exist to make this decision wisely, as, e.g. [1], but do
not consider the necessity to change the format later.

The optimal format depends on the properties of the data. While the proper-
ties of the base data might change only incrementally over time caused by DML
operations, the properties of intermediate results usually change dramatically
during the processing of a single query. Consequently, operators should be able
to output data in another format than their input. For example, a selection might
get dictionary-compressed data as input and let only small values pass, such that
afterwards a null suppression scheme would be more appropriate. Not adapting
the format of the operator’s output implies a waste of performance potential.
At this point, transformations can be a solution. They could be applied to the
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output of an operator or even inside an operator. This idea is especially well com-
binable with the transient decompression strategy proposed by Chen et al. in
[2]. The authors suggest that operators which are unable to process compressed
data directly should temporarily decompress their input, but use the compressed
form for the output, again. If a recompression has to be done anyway, it could, of
course, provide another format. Note that transformations during query process-
ing must be as efficient as possible, since they are applied online. Due to that,
our novel direct transformation techniques are inevitable.

7 Conclusions

In-memory database management systems are of increasing importance in both,
business and science. They regularly combine a column-oriented storage format
with lightweight compression techniques. The efficient implementation of light-
weight compression algorithms as well as the decision for an optimal compressed
format have been studied in the literature. However, if the characteristics of the
compressed data change over time or during query processing, efficient trans-
formations to other compressed formats can be beneficial, but have not been
investigated before. In order to fill this gap, we proposed to use direct transfor-
mations that avoid to materialize any uncompressed data in main memory and
are cache optimized. Furthermore, we presented precise and imprecise transfor-
mations as two variants of lossless direct transformations. Besides a conceptual
introduction of such techniques, we also described three concrete algorithms. We
conducted an experimental evaluation proving that our new techniques outper-
form the naive approach of a complete decompression and recompression. To
highlight the usefulness of our direct transformations, we described two possible
application scenarios: indirect compression and transformations during query
processing.
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