
Network-on-Chip Firewall: Countering Defective
and Malicious System-on-Chip Hardware

Michael LeMay∗, Carl A. Gunter
University of Illinois at Urbana-Champaign

September 5, 2018

Abstract

Mobile devices are in roles where the integrity and confidentiality of their
apps and data are of paramount importance. They usually contain a System-on-
Chip (SoC), which integrates microprocessors and peripheral Intellectual Property
(IP) connected by a Network-on-Chip (NoC). Malicious IP or software could
compromise critical data. Some types of attacks can be blocked by controlling
data transfers on the NoC using Memory Management Units (MMUs) and other
access control mechanisms. However, commodity processors do not provide strong
assurances regarding the correctness of such mechanisms, and it is challenging to
verify that all access control mechanisms in the system are correctly configured.
We propose a NoC Firewall (NoCF) that provides a single locus of control and
is amenable to formal analysis. We demonstrate an initial analysis of its ability
to resist malformed NoC commands, which we believe is the first effort to detect
vulnerabilities that arise from NoC protocol violations perpetrated by erroneous or
malicious IP.

1 Introduction
Personally administered mobile devices are being used or considered for banking,
business, military, and healthcare applications where integrity and confidentiality are
of paramount importance. The practice of dedicating an entire centrally administered
phone to each of these apps is being abandoned in favor of granting access to enterprise
data from personal devices as workers demand the sophistication available in the latest
consumer mobile devices [14].

Security weaknesses of popular smartphone OSes have motivated the use of isolation
mechanisms on devices entrusted with critical data, including hypervisors that operate
at a lower level within the system [50]. For example, hypervisors can isolate a personal
instance of Android from a sensitive instance of Android, where both instances run

∗M. LeMay was with the University of Illinois at Urbana-Champaign while performing the work described
herein, but he was employed by Intel Corporation at the time of submission. The views expressed are those of
the authors only.

1

ar
X

iv
:1

40
4.

34
65

v2
 [

cs
.C

R
]

 1
6

Ja
n

20
17

simultaneously within Virtual Machines (VMs) on a single physical device. However,
virtualized and non-virtualized systems both rely on the correctness of various hardware
structures to enforce the memory access control policies that the system software
specifies to enforce isolation.

Mobile devices are usually based on a System-on-Chip (SoC) containing micropro-
cessor cores and peripherals connected by a Network-on-Chip (NoC). Each component
on the SoC is a piece of Intellectual Property (IP). SoC IP may be malicious intrinsically
at the hardware level, or it may be used to perform an attack orchestrated by software,
and such IP may lead to compromises of critical data. Such attacks would involve
data transfers over the NoC. Memory Management Units (MMUs) and IO-MMUs can
potentially prevent such attacks.

Commodity processors do not provide strong assurances that they correctly enforce
memory access controls, but recent trends in system design may make it feasible to
provide such assurances using enhanced hardware that is amenable to formal analysis.
In this paper, we propose the hardware-based Network-on-Chip Firewall (NoCF) that
we developed using a functional hardware description language, Bluespec. Although
Bluespec has semantics based on term-rewriting systems, those semantics also reflect
characteristics of hardware [1]. We developed an embedding of Bluespec into Maude,
which is a language and set of tools for analyzing term-rewriting systems. At a high
level, term-rewriting systems involve the use of atomic rules to transform the state of a
system. We know of no elegant way to directly express the hardware-specific aspects of
Bluespec in a Maude term-rewriting theory, so we used Maude strategies to control the
sequencing between rules in the theories to match the hardware semantics. We then used
our model to detect attacks that violate NoC port specifications, which have previously
received little attention.

A lightweight processor core is dedicated to specifying the NoCF policy using a set
of policy configuration interconnects to interposers, which provides a single locus of
control. It also permits NoCF to be applied to NoCs lacking access to memory, avoids
the need to reserve system memory for storing policies when that memory is available,
and simplifies the internal logic of the interposers. The policy can be pre-installed
or specified dynamically by some entity such as a hypervisor within the system. The
interposers and associated policies are distributed to accommodate large NoCs.

We use a triple-core FPGA prototype running two isolated instances of Linux to
demonstrate that NoCF introduces negligible performance overhead and can be expected
to only slightly increase hardware resource utilization when enforcing coarse-grained
memory access control policies.

To demonstrate one type of attack that can be blocked by NoCF, we construct
malicious IP analogous to a Graphics Processing Unit (GPU) and show how it can
be instructed to install a network keylogger by any app that simply has the ability to
display graphics. This attack could be used to achieve realistic, malicious objectives.
For example, a government seeking to oppress dissidents could convince them to view
an image through a web browser or social networking app and subsequently record all
of their keystrokes.

Our contributions include:
• An efficient, compact NoCF interposer design that is amenable to formal analysis

and provides a single locus of control.

2

• An embedding of Bluespec into the Maude modeling language.
• Use of formal techniques to discover a new attack.
• A triple-core FPGA prototype that simultaneously runs two completely isolated,

off-the-shelf instances of Linux with no hypervisor present on the cores or attached
to the NoCs hosting Linux at runtime.

The rest of this paper is organized as follows. §2 provides background on sensitive
apps for mobile device and on SoC technology. §3 discusses the design of NoCF. §4
evaluates a NoCF prototype. §5 formally analyzes that prototype. §6 discusses other
potential uses for NoCF and ways to improve it. §7 discusses related work. §8 concludes
the paper.

2 Background

2.1 Mobile Device Applications
Sensitive information from various sectors is commonly accessed using mobile de-
vices [54]. The particular usages of concern are rapidly evolving and somewhat unpre-
dictable. For example, mobile banking apps have quickly gained widespread acceptance
and run alongside other apps. They have capabilities such as supporting check de-
posits based on camera images that could permit attackers to insert themselves into
critical banking transactions if they compromised the host device. We highlight some
particularly interesting apps in this section.

The military has considered supporting apps on commercial smartphones that sol-
diers already possess and that are used to perform mainstream smartphone tasks such as
accessing the Internet, or that the military supplies to them for dedicated use. Those
apps could include support for tracking other soldiers using GPS, sharing smartphone
and Unmanned Aerial Vehicle (UAV) sensor data [24], piloting UAVs [31], entering
intelligence information [3, 71], identifying suspect vehicles and people, managing
medical records [36], and providing realtime guidance to paratroopers using a mobile
device during descent and after landing [6].

Mobile devices in the hands of both patients and clinicians are broadly applicable to
healthcare. They have been used to perform ultrasound imaging, screen for skin cancer,
monitor sleep patterns and other physical activity, plan surgeries, and perform cytometry
(counting and examining cells in body fluids) [5, 11, 42, 57, 61]. It is possible that iPads
will be able to replace many pieces of equipment in operating rooms [70]. Electronic
Health Records (EHRs) can be accessed using native apps or web apps. The Department
of Veterans Affairs permits its employees to view and potentially store sensitive data on
personal Apple devices [15, 48]. Smartphones can also be used in a clinical setting to
send and receive phone calls and text messages containing patient data [23, 26].

An analysis of sharing of compromised medical data on peer-to-peer networks
indicates that attackers are already targeting such data [35]. An attacker may be able to
embarrass the patient using information stolen from their medical records, or perhaps
use it to devise a strategy for harming the patient. For example, the attacker could learn
the exact model information of the patients’ Implantable Cardiac Defibrillator that could
be used to identify feasible attacks to send malicious commands to the ICD to harm the

3

patient. However, such attacks would have other prerequisites, such as equipment for
attacking the ICD and close physical proximity [30]. In contrast, attackers could fairly
immediately harm a diabetic patient by remotely attacking an app that displays the level
of glucose in their blood, as measured by a phone-compatible blood glucose monitor.
The data from those apps may influence inputs to insulin delivery devices. Paul et al.
discuss the functionality and criticality of similar devices at length [52].

Smartphone apps exist that can access SCADA devices on the electric power
grid [44]. Some SCADA devices are capable of changing the physical flow of electricity,
so it is critical that apps used to control such devices be isolated from malware.

In the future, SoCs may also be used to power cloud servers, and could thus benefit
from the protections provided by NoCF to separate workloads from different clients that
are assigned to run on a single SoC.

2.2 System-on-Chip Technology
An SoC comprises a collection of IP that is processed to result in a final silicon chip
that performs functions that used to be spread across several chips [4]. For example,
the OMAP44x series from Texas Instruments integrates the following hardware plus
more onto a single chip: two ARM cores, graphics accelerator, HDMI controller, timers,
interrupt controller, boot ROM, cryptographic accelerators, USB controller, FLASH
and SDRAM memory controllers, and a serial port controller. This affects the design
and location of the interconnects between those components. Data transfers within a
chip are fast and essentially error-free compared to off-chip transfers.

The SoC development strategy has the advantage of feasibly permitting the intro-
duction of security-enhanced hardware in a particular SoC vendor’s design without
requiring that it be included in all designs that are based on the microprocessor IP
contained within the SoC. Another factor that increases the feasibility of incorporating
such technology is the low incremental cost of adding functionality to an SoC, since it
does not require a separate chip. This is particularly true if the functionality can make
use of the increasingly-plentiful dark silicon, which is silicon that can only be activated
when other silicon is deactivated, due to thermal constraints [25]. It is increasing due
to the additional heat generated by modern silicon manufacturing processes that use
smaller transistors, since the heat dissipation capacity of silicon processors has not
improved at a similar pace. NoCF is entirely contained within the SoC, and parts of it
may be able to use dark silicon.

Each piece of IP on an SoC can be provided by an organization within the SoC
vendor or by an external organization. SoCs commonly contain IP originating from up to
hundreds of people in multiple organizations and spread across multiple countries [64].
It is difficult to ensure that all of the IP is high-quality, let alone trustworthy [12,28]. The
general trend is towards large SoC vendors acquiring companies to bring IP development
in-house [60]. However, even in-house IP may provide varying levels of assurance
depending on the particular development practices and teams involved and the exact
nature of the IP in question. For example, a cutting-edge, complex GPU may reasonably
be expected to exhibit more errors than a relatively simple Wi-Fi controller that has
been in use for several years. Memory Management Units (MMUs) and IO-MMUs
are commonly used to restrict the accesses from IP, which can constrain the effects of

4

erroneous or malicious IP. Thus, errors that can permit memory access control policies
to be violated are the most concerning.

An MMU is a component within a processor core that enforces memory access
control policies specified in the form of page tables that are stored in main memory.
Some SoCs incorporate IO-MMUs that similarly restrict and redirect peripheral master
IP NoC data transfers. A page table contains entries that are indexed by part of a virtual
address and specify a physical address to which the virtual address should be mapped,
permissions that restrict the accesses performed using virtual addresses mapped by that
entry, whether the processor must be in privileged (supervisor) mode when the access is
performed, and auxiliary data. Page tables are often arranged hierarchically in memory,
necessitating multiple memory accesses to map a particular virtual address. To reduce
the expense incurred by page table lookups, the MMU contains a Translation Lookaside
Buffer (TLB) that caches page table entries in very fast memory inside the MMU.
Each isolated software component (such as a process or VM) is typically assigned
a dedicated page table. By only mapping a particular region of physical memory in
one of the component’s page tables, that memory is protected from accesses by other
components. The relatively high complexity of modern MMUs and IO-MMUs increases
the likelihood of errors that undermine their access control assurances [29]. NoCF
is much less complex and can constrain an attack leveraging a vulnerable MMU or
IO-MMU.

It could be preferable to formally verify existing MMUs and IO-MMUs rather than
devising new protection mechanisms. However, it is challenging to formally verify
MMUs and IO-MMUs. Formal verification techniques can prove the absence of design
errors within commercial processor cores, but they currently only provide a good return-
on-investment when used instead to detect errors [8]. To the best of our knowledge,
MMUs have only been formally verified in experimental processors [21, 56]. The
policy data for MMUs and IO-MMUs is itself protected by them, so it is likely to be
more challenging to verify that the policy is trustworthy compared to the NoCF policy
implemented on an isolated core. Finally, the MMU is a central part of each processor
core with many interfaces to other parts of the core, complicating analysis. We have not
formally verified NoCF either, but we demonstrate how to develop a model of it that is
amenable to formal analysis. This is a non-trivial precondition for formal verification.

Individual pieces of IP communicate using one or more NoCs within a single SoC.
A NoC is not simply a scaled-down network comparable to, e.g. an Ethernet LAN.
Networks for large systems, such as LANs, have traditionally been connection-oriented,
predominantly relying on protocols such as TCP/IP. Networks for small systems, such as
NoCs, have traditionally lacked support for persistent connections. Older SoC designs
relied on buses, which are subtly distinct from NoCs. For our purposes, it is not
necessary to distinguish between buses and NoCs. We are concerned primarily with
their external ports, which are common between both types of interconnects. Slave
devices accessible over a NoC are assigned ranges of physical addresses, so memory
access controls like those in NoCF can also be used to control access to devices besides
actual RAM controllers.

Malicious hardware can be inserted at many points within the SoC design and
manufacturing process and can exhibit a variety of behaviors to undermine the security
assurances of the system [9]. For example, malicious hardware can watch for a particular

5

sequence of bytes on a data bus and then trigger the MMU to start ignoring CPU privilege
levels when implementing memory access control policies, so that unprivileged code
can access privileged memory regions [38]. Various countermeasures have been devised
to contain or otherwise disrupt malicious hardware, but some of them require access
to the source code of the IP and many of them have various functional drawbacks [9].
We discuss how NoCF can help defend against malicious IP. Some of those previously
developed techniques may be complementary to ours when they are feasible.

The protection mechanisms that we propose are inserted between the NoC and the
IP, and they do not necessitate changes to individual IP blocks. Thus, NoCF could be
added quite late in the design process for an SoC, after the main functionality of the
SoC has been implemented.

3 Design

3.1 Threat Model
Software running on a particular core is assumed to be arbitrarily malicious and must be
prevented from compromising the confidentiality, integrity, and availability of software
on other cores. The system software that configures NoCF must correctly specify a
policy to enforce isolation between the cores. Recent work on minimizing the Trusted
Computing Base (TCB) of hypervisors and formally verifying them may be helpful in
satisfying this requirement [39, 62].

Our concern in this paper is that isolation between cores that are protected in this
manner could potentially be compromised by misbehaving IP. We now define the types
of compromises we seek to prevent:

1. Confidentiality: Some misbehaving IP may construct an unauthorized information
flow from some other target IP transferring data that the misbehaving IP or the
VM controlling it is not authorized to receive. This flow may be constructed
with or without the cooperation of the target IP. The misbehaving IP may have
authorization to access a portion of the target IP, but not the portion containing
the confidential data, e.g. in the case of a shared memory controller.

2. Integrity: Some misbehaving IP may unilaterally construct an unauthorized
information flow to some other target IP transferring data that masquerades as
data from a different originator. For example, it may modify executable code
stored in shared memory that is used by a VM, or modify medical sensor data
that is displayed to a user.

3. Availability: Resource sharing is an intrinsic characteristic of SoCs, so there is
the possibility that misbehaving IP may interfere with other IP using those shared
resources. For example, the misbehaving IP could flood the NoC with requests to
monopolize the NoC.

IP can manipulate wires that form its NoC port in an arbitrary manner. The IP might
not respect the port clock and can perform intra-clock cycle wire manipulations. The IP
might also violate the protocol specification for the port.

Since NoCF performs address-based access control, we trust the NoC fabric to
selectively and accurately route requests and responses to and from the appropriate IP,

6

(a) Unaltered, hypervisor-based system. (b) Similar system protected by NoCF.

Figure 1: Comparison of TCBs, which are within the thick lines. Colored areas depict
layers of hardware.

so that other IP cores do not have the opportunity to eavesdrop or interfere. Currently-
available fabrics may in fact not be trustworthy and resistant to attacks, which should be
the subject of future research.

We trust slave devices to correctly process requests. For example, the memory
controller must properly process addresses that it receives to enforce policies that grant
different IP cores access to different regions of a memory accessible through a single
shared memory controller. Verification of such devices is an important, orthogonal area
of research.

Covert channels are more prevalent between components that have a high degree of
resource sharing, such as between software that shares a processor cache. Thus, NoCF
provides tools to limit covert channels by restricting resource sharing. However, we do
not attempt to eliminate covert channels in this work.

A mobile device may be affected by radiation and other environmental influences
that cause unpredictable modifications of internal system state. A variety of approaches
can handle such events and are complementary to our effort to handle misbehaviors that
arise from the design of the device [49].

System software could be maliciously altered. Trusted computing techniques can
defeat such attacks by ensuring that only specific system software is allowed to exe-
cute [7]. We focus on techniques whereby the SoC vendor can constrain untrustworthy
IP in its chip designs. Software security and hardware tamper-resistance techniques can
further improve assurances of overall system security.

3.2 Core-Based Isolation
Assigning software components to separate cores eliminates vulnerabilities stemming
from shared resources such as registers and L1 caches. Regulating their activities on
NoCs with a dynamic policy addresses vulnerabilities resulting from sharing main
memory or peripherals. We initially focus on isolating complete OS instances on
separate cores, since the memory access control policies required to accomplish that are

7

Figure 2: Internal configuration of NoCF interposer. Each interposer contains all of
these components. Hatched regions are formally analyzed in §5.

straightforward and coarse-grained. However, NoCF could also be used to implement
other types of policies.

The NoCF policy either needs to be predetermined or defined by a hypervisor, like
the hypervisor specifies MMU policies. The policy will actually be maintained by an
integrity kernel that runs on a dedicated integrity core, which will be discussed further
below. The effect that this has on the TCB of a system with minimal resource sharing,
such as our prototype system that isolates two Linux instances, is depicted in Figure 1.
The TCB will vary depending on how the policy is defined, since any software that can
influence the policy is part of the TCB. In this example, the policy that was originally
defined in a hypervisor is now defined in the integrity kernel, completely eliminating
the hypervisor.

NoCF provides a coarser and more trustworthy level of memory protection in
addition to that of the MMU and IO-MMU. These differing mechanisms can be used
together to implement trade-offs between isolation assurances and costs stemming from
an increased number of cores and related infrastructure.

The integrity core must be able to install policies in NoCF interposers and must
have sufficient connectivity to receive policy information from any other system entities
that are permitted to influence policies, such as a hypervisor. It may be possible to
place the integrity kernel in firmware with no capability to communicate with the rest of
the system, if a fixed resource allocation is desired. On the other end of the spectrum
of possible designs, the integrity core may have full access to main memory, so it
can arbitrarily inspect and modify system state. Alternately, it may have a narrow
communication channel to a hypervisor. Placing the integrity kernel on an isolated
integrity core permits the pair of them to be analyzed separately from the rest of the
system. However, it is also possible to assign the role of integrity core to a main
processor core to reduce hardware resource utilization, even if the core is running other
code.

3.3 NoCF Interposers
We now discuss the design decisions underlying NoCF. We base our design on the
widely-used AMBA AXI4 NoC port standard. The rule format and storage mechanism

8

of the Policy Decision Point (PDP) are loosely modeled after those of a TLB. The PDP
decides which accesses should be permitted so that a Policy Enforcement Point (PEP)
can enforce those decisions. Policy rules are inserted directly into the PDP using a
policy configuration interconnect to an integrity core. This reduces the TCB of the PDP
relative to a possible alternate design that retrieves rules from memory like an MMU.
The integrity core is a dedicated, lightweight processor core that is isolated from the rest
of the system to help protect it from attack. The decisions from the PDP are enforced
for each address request channel by that channel’s PEP.

The AXI4 specification defines two matching port types. The master port issues
requests and the slave port responds to those requests. Each pair of ports has two distinct
channels, one for read requests and one for write requests. This port architecture enables
us to easily insert NoCF interposers, each of which contains a PDP, an integrity core
interface, and two PEPs, one for each channel. Each interposer provides both a master
and slave port so that it can be interposed between each IP master port and the NoC
slave port that it connects to. A single interposer is depicted in Figure 2.

We evaluate our design in a prototype system containing two main processor cores in
addition to the integrity core, plus a malicious GPU. We now consider it as an example of
how such a system is arranged, although many other system arrangements are possible.
Each main core has four AXI4 master ports. They connect to two NoCs in the system,
one of which solely provides access to the DDR3 main memory controller, while the
other provides access to the other system peripherals. Each main core has two ports
connected to each NoC, one for instruction accesses and the other for data accesses.
The GPU has a single master port connected to the NoC with the main memory, along
with a slave port connected to the peripheral NoC (not shown). We depict this topology
in Figure 3. One interposer is assigned to each of the ports between the master IP and
the NoCs, with a corresponding policy configuration interconnect to the integrity core.
The depicted interconnect topology is slightly simplified compared to the one used in
the commercial ARM Cortex-A9 MP processor, which shares an L2 cache between up
to four cores. Thus, it would be necessary in that processor to place interposers between
the cores and the L2 cache controller and to trust that controller to implement memory
addressing correctly.

The distributed nature of the NoCF interposers enables them to each use a policy
tailored to the port being regulated and also concentrates the internal interfaces contain-
ing many wires between the PDP and PEPs in a small area of the chip while using an
interface containing few wires to span the potentially long distance to the integrity core.
However, it may be useful in some cases to share a PDP between several interposers
that are subject to a single policy. That approach would reduce the number of policy
configuration interconnects and the total PDP policy storage. A more complex approach
would be to support selectively-shared rules for separate interposers in a single PDP,
which would still reduce interconnect logic and could provide some reduction in PDP
storage.

Each policy rule specifies a region of memory to which read and/or write access
is permitted. A region is defined by a base address and a mask length specifier, which
indicates the size of the region as one of a set of possible powers of two. This type of
policy can be implemented very efficiently in hardware and corresponds closely to the
policies defined by conventional MMU page tables.

9

Figure 3: System topology. Each brick wall represents a NoCF interposer on one NoC
port. Dashed lines denote policy configuration interconnects. Solid lines denote NoC
ports. For the interconnects and ports, thin lines denote single items and thick lines
denote pairs of items.

Address requests are regulated by the PEPs in cooperation with the PDP. The PDP
stores a fixed number of rules in its database. The PDP checks the address in the request
against all policy rules in parallel. Whenever a request matches some rule that has the
appropriate read or write permission bit set, it will be permitted to pass through the PEP.
Otherwise, the PDP sends an interrupt to the integrity core and also sends it information
about the failing request. It then blocks the request until the integrity core instructs it to
resume.

The integrity core can modify the policy rules prior to issuing the resume command.
To modify policy rules, the integrity core sends commands over the policy configuration
interconnect to insert a policy rule or flush all existing policy rules. Other commands
could be defined in the future. When the interposer receives the resume command, it
re-checks the request and either forwards it if it now matches some rule, or drops it and
returns an error response to the master. It could also do something more drastic, such as
blocking the clock signal or power lines feeding the master that issued the bad request.

Addresses other than the one in the request may be accessed during the ensuing
data transfer. A variety of addressing modes are supported by AXI4 that permit access
to many bytes in a burst of data transfers initiated by a single request. The policy
administrator must account for these complexities by ensuring that all bytes that can
actually be accessed should be accessible.

It can be useful to physically separate a protection mechanism from the surrounding
logic and constrain its interfaces to that logic so that it can be independently ana-
lyzed [32]. This is possible in the case of NoCF, since its only interfaces are the
controlled NoC ports and the policy configuration interconnect.

10

4 Evaluation

4.1 Prototype Implementation and Hypervisor Functionality
We used a Xilinx ML605 evaluation board, which includes a Virtex-6 FPGA, to imple-
ment a prototype of NoCF. We use MicroBlaze architecture processor cores implemented
by Xilinx, because they are well-supported by Xilinx tools and Linux. The main cores
allocate 16KiB to each instruction and data cache. The integrity core is very lightweight,
with no cache, MMU, or superfluous optional instructions. It is equipped with a 16KiB
block of on-chip RAM directly and exclusively connected to the instruction and data
memory ports on the integrity core. This RAM is thus inaccessible from the other cores.
This block is initialized from an integrity kernel firmware image when the FPGA is
configured. The PDP, integrity core interface, and PEP are all implemented in Bluespec
to leverage its elegant semantics and concision, with interface logic to the rest of the
hardware system written in Verilog and VHDL.

The prototype runs Linux 3.1.0-rc2 on both main cores, including support for a serial
console from each core and exclusive Ethernet access from the first core. We compiled
the Linux kernel using two distinct configurations corresponding to the cores so that
they use different regions of system memory and different sets of peripherals. This
means that no hypervisor beyond the integrity kernel is required, because the instances
are completely separated. The system images are loaded directly into RAM using a
debugger.

The integrity kernel specifies a policy that constrains each Linux instance to the
minimal memory regions that are required to grant access to the memory and peripherals
allocated to the instance. Attempts to access addresses outside of an instance’s assigned
memory regions cause the instance to crash with a bus error, which is the same behavior
exhibited by a system with or without NoCF when an instance attempts to access
non-existent physical memory.

The NoCF interposer is inserted at each slave port exported by the NoC IP, a total
of nine ports. The interposers each contain two policy rules and replace them in FIFO
order, except that the interposers for data loads and stores to the peripherals contain four
policy rules each, since they are configured to regulate fine-grained memory regions.
We evaluated two types of policy configuration interconnects with differing levels
of resource usage. One design creates a bi-directional pair of direct links between
each interposer and the integrity core using Fast Simplex Link (FSL) IP provided
by Xilinx. Each FSL link only supports sending fixed-size packets of data in one
direction. The second design groups multiple interposers behind a pair of AXI slave
interfaces, which then implement direct links to each interposer. The NoCF interposer
implementations for the various sizes of policy storage and interconnect types all
comprise between 1494 and 1571 lines of Verilog generated by the Bluespec compiler
from source files containing 518 and 512 lines for the FSL and AXI variants, respectively.
The integrity kernel firmware is compiled from 239 and 262 lines of C (as measured
by Wheeler’s SLOCCount) for the FSL and AXI variants, respectively, excluding
third-party libraries. To demonstrate the simplicity of the kernel, we describe it using
pseudocode in Appendix A and discuss how it compares to kernels that rely on MMUs
or IO-MMUs for protection.

11

4.2 Constraining a Malicious GPU
A malicious GPU could perform powerful attacks, since it would have bus-master access
and be accessible from all apps on popular mobile OSes. Even an app that requests
no explicit privileges can display graphics, so permission-based controls are useless
to prevent GPU-based attacks. Furthermore, almost all apps have a legitimate need to
display graphics, so software protection mechanisms that analyze app behavior could
not be expected to flag communications with the GPU as suspicious.

We constructed hardware IP that is analogous to a hypothetical malicious GPU. It
has both master and slave AXI4 interfaces. In response to commands received on its
slave interface, the IP reads data from a specified location in physical memory. This is
analogous to reading a framebuffer. The IP inspects the least significant byte of each
pixel at the beginning of the framebuffer. This is a very basic form of steganographic
encoding that only affects the value of a single color in the pixel, to reduce the chance
of an alert user visually detecting the embedded data. More effective steganographic
techniques could easily be devised. If those bytes have a specific “trigger” value,
then the IP knows that part of the framebuffer contains a malicious command. The
trigger value is selected so that it is unlikely to appear in normal images. The IP then
continues reading steganographically-embedded data from the image and interprets it as
a command to write arbitrary data embedded in the image to an arbitrary location in
physical memory.

We developed a simple network keylogger to be injected using the malicious IP. The
target Linux system receives user input via a serial console, so the keylogger modifies
the interrupt service routine for the serial port to invoke the main keylogger routine after
retrieving each character from the serial port hardware. This 20 byte hook is injected
over a piece of error-checking code that is not activated in the absence of errors. The
physical address and content of this error-checking code must be known to the attacker,
so that the injected code can gracefully seize control and later resume normal execution.
The keylogger hook is generated from a short assembly language routine.

The main keylogger routine is 360 bytes long and sends each keystroke as a UDP
packet to a hardcoded IP address. It uses the optional netpoll API in the Linux kernel to
accomplish this in such a compact payload. This routine is generated from C code that
is compiled by the attacker as though it is a part of the target kernel. The attacker must
know the addresses of the relevant netpoll routines as well as the address of a region
of kernel memory that is unused, so that the keylogger can be injected into that region
without interfering with the system’s business functions. We chose a region pertaining
to NFS functionality. The NFS functionality was compiled into the kernel, but is never
used on this particular system.

All of the knowledge that we identified as being necessary to the attacker could
reasonably be obtained if the target system is using a standard Linux distribution with
a known kernel and if the attacker knows which portion of the kernel is unlikely to be
used by the target system based on its purpose. For example, other systems may use
NFS, in which case it would be necessary to find a different portion of the kernel that is
unused on that system in which to store the keylogger payload.

To constrain the GPU in such a way that this attack fails, it is simply necessary
to modify the NoCF policy to only permit accesses from the GPU to its designated

12

Figure 4: NoCF can be configured to block attacks that rely on writes by malicious
hardware to specific memory locations that it has no legitimate need to access.

framebuffer in main memory, as is depicted in Figure 4.
This particular attack could also be blocked by a kernel integrity monitor, which

ensures that only approved kernel code is permitted to execute [58]. The malware
injected by the GPU would not be approved, so it would be unable to execute. However,
kernel integrity monitors fail to address attacks on userspace and can be complex,
invasive, and high-overhead.

4.3 Hardware Resource Usage
NoCF requires additional hardware resources in the SoC. The resources dedicated
to the interposers should be roughly proportional to the number of NoC ports being
regulated, whereas the integrity core can control many interposers, limited by the policy
configuration workload imposed by those interposers. We synthesized three distinct
designs using Xilinx EDK v.13.3 to measure resource usage. The first (Reference) lacks
all NoCF functionality, the second (Reference with Integrity Core) adds the integrity
core, and the third and fourth [NoCF (AXI) and NoCF (FSL)] add the interposers
and policy configuration interconnects. The labels in parentheses denote the type of
interconnect between the interposers and integrity core. All designs run the processor
cores at 80MHz. The FPGA hardware resource utilization is listed in Table 1.

FPGAs contain a variety of resources: 1) Look-Up Tables (LUTs): Typically, a
LUT is a small read-only memory that stores values representing the output of a logic
function applied to its address input. Some LUTs can alternately be used as small
RAMs or shift registers. 2) Registers: These store values that must be saved across
clock cycle transitions. 3) Slices: Each slice contains some of the LUTs and registers
listed previously. 4) RAMs: These are relatively large blocks of on-chip RAM, which
can be much faster than off-chip RAM such as DDR3. An FPGA design specifies how
to configure and connect all of these types of components using wires within the FPGA
to implement a circuit.

NoCF imposes negligible performance overhead in our prototype system that isolates
two instances of Linux. Due to the coarse granularity of the resource allocations to each
instance, we were able to define large memory regions in the policy that resulted in
a total of six delayed NoC requests during an entire Linux session involving booting
the kernel, HTTP downloads, and GZip compression. However, other workloads could

13

Design LUTs Registers Slices 36Kb RAMs

Reference 21,245 21,446 10,328 30
Reference with Integrity Core 22,297

(5.0%)
22,034
(2.7%)

10,655
(3.2%)

34 (13.3%)

NoCF (AXI) 26,282
(23.7%)

24,798
(15.6%)

11,936
(15.6%)

34 (13.3%)

NoCF (FSL) 26,780
(26.1%)

24,541
(14.4%)

12,100
(17.2%)

34 (13.3%)

Table 1: FPGA resource utilization of designs. Percentages indicate increases over
reference design. The MicroBlaze cores in our prototype use very few hardware
resources compared to cores that are popular in mobile devices, such as ARM cores, so
the relative resource usage increases imposed by NoCF in such a system will be much
lower than those reported here.

result in much higher levels of overhead. For example, a system that defines small
memory regions for policy rules and then accesses many of them within a short period
of time would cause NoCF policy rules to be frequently replaced. This effect could be
reduced by increasing the number of policy rules stored in the interposers, at the cost of
increased hardware resource utilization. The cost of each interrupt that updates policy
rules depends on the amount of processing performed by the interrupt handler.

5 Formal Analysis
We developed a shallow embedding of a subset of Bluespec into Maude, a native term
rewriting system, and used a Maude model of NoCF to precisely identify a subtle
vulnerability in NoCF. A shallow embedding is one where source terms are mapped
to target terms whose semantics are natively provided by the target system. We only
model the portion of the system that is shown with a hatched background in Figure 2.
This model was sufficient to detect an interesting vulnerability, although a complete
model would be necessary to analyze the entire NoCF system in the future.

We manually converted substantial portions of the Bluespec code for NoCF to
Maude using a straightforward syntactic translation method that could be automated.
We developed our Bluespec description with no special regard for its amenability to
analysis, so the subset of the Bluespec syntax that we modeled has not been artificially
restricted. We modeled each variable name and each value for Bluespec structures,
enumerations, and typedefs as a Maude term. We defined separate sorts for variable
names and for data values that can be placed in Bluespec registers or wires. We defined
subsorts for specific types of register data, such as the types of data that are transferred
through AXI interfaces and the state values for each channel. We defined a separate sort
for policy rules.

The model was structured as an object-oriented system. Several distinct message
types can be sent between objects. All of them specify a method to be invoked, or

14

that was previously invoked and is now returning a value to its caller. Anonymous
and return-addressed messages are both supported. The latter specify the originator
of the message. These are used to invoke methods that return some value. There are
staged variants of the anonymous and return-addressed message types that include a
natural number indicating the stage of processing for the message. This permits multiple
rewrite rules to sequentially participate in the processing of a single logical message.
Return messages wrap some other message that was used to invoke the method that is
returning. They attach an additional piece of content, the return value, to the wrapped
message. Special read and write token messages regulate the model’s execution, as
will be described below. Finally, two special types of messages are defined to model
interactions over the FSL interface. An undecided message contains an address request,
modeling an interposer notifying the integrity core of a blocked request. An enforce
write message models the integrity core instructing the interposer to recheck the blocked
request. Those two message types abstract away the details of FSL communication,
since those are not relevant to the Critical Security Invariant described below.

We defined equations to construct objects modeling the initial state of each part of
the system. We defined Maude object IDs as hierarchical lists of names to associate
variables with the specific subsystem in which they are contained and to represent the
hierarchical relationships between subsystems. We defined five classes corresponding
to the Bluespec types of variables in the model. Registers persistently store some value.
The value that was last written into the register in some clock cycle prior to the current
one is the value that can be read from the register. A register always contains some
value. Wires can optionally store some value within a single clock cycle. Pulse wires
behave like ordinary wires, but they can only store a single unary value. OR pulse wires
behave like pulse wires, but it is possible for them to be driven multiple times within a
single clock cycle. They will only store a unary value if they are driven at least once
during the clock cycle.

We modeled Bluespec methods as rewrite rules. The required activation state for the
relevant objects is written on the left hand side of the rule, and the transformed state of
those objects is written on the right hand side. Either side can contain Maude variables.
Simple Bluespec rule conditions can be represented by embedding the required variable
values into the left hand side of the corresponding Maude rule. More complex conditions
can be handled by defining a conditional Maude rule that evaluates variables from the
left hand side of the Maude rule. Updates to register variables require special handling
in Maude. We define a wire to store the value to be written to the register prior to the
next clock cycle, and include a Maude rewriting rule to copy that value into the register
before transitioning to the next cycle.

We modeled Bluespec functions as Maude equations. We also defined Maude
functions to model complex portions of Bluespec rules, such as a conditional expression.

The main challenge that we overcame in embedding Bluespec in Maude stems from
the fact that Maude by default implements something similar to pure term rewriting
system semantics, in which no explicit ordering is defined over the set of rewrite rules.
To model the modified term rewriting semantics of Bluespec, we imposed an ordering
on the rules in the Maude theory that correspond to Bluespec rules and restricted them
to fire at most once per clock cycle. This includes rules to model the implicit Bluespec
rules that reset ephemeral state between cycles. We used the Maude strategy framework

15

Figure 5: Timing of address requests at port relative to PEP state for an attack forwarding
an unchecked address request.

to control rule execution [45]. The Bluespec compiler output a total ordering of the
rules that was logically equivalent to the actual, concurrent schedule it implemented in
hardware. We applied that ordering to the corresponding Maude rules.

To model bit vectors, we relied on a theory that had already been developed as part
of a project to model the semantics of Verilog in Maude [46].

To search for vulnerabilities in NoCF, we focused on the following Critical Security
Invariant:

Invariant 1 If an address request is forwarded by a NoCF interposer, then it is permitted
by the policy within that interposer.

We modeled some basic attack behaviors to search for ways in which that invariant
could be violated. In particular, we specified that during each clock cycle attackers
may issue either a permissible or impermissible address request, relative to a predefined
policy, or no address request. The AMBA AXI4 specification requires master IP to wait
until its requests have been acknowledged by the slave IP before modifying them in any
way, but our model considers the possibility that malicious IP could violate that.

We used the Maude “fair rewriting” command to perform a breadth-first search of
the device’s possible states for violations of the Critical Security Invariant. We extended
the Maude strategy framework to trace the rule invocations so that the vulnerabilities
underlying detected attacks could be independently verified and remedied.

We detected a subtle possible attack applicable to a straightforward implementation
of the interposer. First, the attacker issues the permissible request, when the slave IP is
not yet ready to accept a new request. The attacker then issues the impermissible request
after the PEP has approved the first request and is simply waiting for the slave IP to
accept the request. The PEP assumes the master adheres to the protocol specification and
will wait for the initial request to be acknowledged, so it passes the request through from
the master. This attack is depicted in Figure 5. This type of model is powerful, since it
is a simple matter to model basic attacker behaviors which can then be automatically
analyzed to detect complex attacks.

We implemented a countermeasure in the Bluespec code to block this attack. It
now buffers the request that is subjected to access control checking, and then issues
that exact request to the slave if it is allowed, regardless of the current state of the
request interface from the master. We evaluated this enhanced design in §4.3. This
countermeasure introduces additional space overhead, so it is not something that a
designer would reasonably be expected to include at the outset in a straightforward
implementation.

16

We extended the Verilog specification of the NoC ports to interface with the Verilog
generated by the Bluespec compiler. This implies that we must trust or verify the Verilog
interface code. The interface code is straightforward, consisting almost entirely of wire
connections, so it should be amenable to manual or formal analysis. Note that we must
also trust the Bluespec compiler to output Verilog code that corresponds to the input
Bluespec code.

Our threat model allows malicious IP to perform intra-clock cycle manipulations of
the wires in the port to the interposer. The effects of such manipulations are difficult
to analyze at the level of abstraction considered in this section. If this type of behavior
is a concern, it can be easily suppressed by buffering the port using a slice of registers
that effectively forces the IP to commit to a single port state for a full clock cycle
from the perspective of the interposer. The commercial NoC IP that we used in our
prototype supports the creation of such register slices with a simple design parameter.
This solution would introduce a single clock cycle delay at the port.

Ultimately, NoCF and other elements of the TCB should be formally verified to be
resistant to foreseeable attack types, and the analysis described here suggests that the
elegant semantics of Bluespec helps to make such an effort more tractable than it would
be if we had used Verilog or VHDL.

As an intermediate goal, it will be important to model more potential attacker
behaviors to identify additional vulnerabilities and formally verify the absence of
vulnerabilities when possible. The model should be expanded to model all possible
sequences of values that misbehaving IP could inject into the NoC ports to which it has
access. A challenge is that each master controls a large number of input wires that feed
into the NoC. Many of these wires carry 32-bit addresses and data, so inductive proof
strategies may permit that number to be substantially reduced by showing that a model
using narrower address and data ports is equivalent to the full model in the context of
interesting theorems. Similarly, induction may permit long sequences of identical input
values or repetitive sequences of input values to be collapsed to shorter sequences, if in
fact the NoC logic does not impart significance to the patterns in question.

We considered one theorem for which we detected a counterexample, but there
are many other theorems that are foundational to the system’s trustworthiness and that
should be used as guidance while analyzing NoCF. The process of identifying these
theorems should be informed by past vulnerabilities, system requirements, and desirable
information-theoretic properties.

Analyzing NoCF and the rest of the TCB with respect to the theorems and the
detailed model we have proposed is an important step towards providing strong assurance
that the system can be trusted to process sensitive data alongside potentially misbehaving
hardware and software components. Our formal analysis of the existing NoCF prototype
demonstrates the improved analysis capabilities that are enabled by formal hardware
development practices and modern formal analysis tools. This suggests that the broader
analysis effort we have proposed is feasible, given sufficient resources.

17

Figure 6: Dual-persona smartphone architecture based on L4Android. The thick line
divides hardware below from software above.

6 Discussion

6.1 Protecting Full-Featured Devices
In this section, we briefly explain how NoCF can protect systems with varying degrees
of sharing between protected subsystems. We first consider a full-featured multi-
persona device that runs two Android instances on a single device and, unlike our
prototype, multiplexes hardware peripherals between them. L4Android is one hypervisor
that supports such a system [40], so we use it to provide examples of what software
components are required. We base our discussion on a quad-core processor, although
additional cores could support a higher number of isolated Android instances or further
subdivisions of system components.

Figure 6 depicts a possible architecture for such a system that is practical and
exhibits desirable attack-resistance properties. The grouping of software components
onto particular cores is enforced by NoCF, which allows access to the memory and
peripherals associated with each group of software components only from the core
beneath that group. Some other memory regions outside of those denoted by the
patterning are used to permit limited communication between software components on
different cores. Communication is implemented by a microkernel present on every core
and collectively serving as the hypervisor. Each microkernel also configures its core’s
MMU to isolate components sharing that core, like those shown in gray boxes. Not
shown are the integrity core and integrity kernel. The hypervisor communicates with
those components in some way to establish a policy matching the depicted boundaries
and the associated shared memory regions.

The runtime environment is isolated on a core, but it provides services to instances
and drivers on other cores. Those services are fairly stable, minimal, and relatively
feasible to validate through extensive testing and formal verification.

18

We show the shared drivers grouped on a single core, but this could permit a
malicious driver for a device not needed by some instance to compromise the operation
of other drivers the instance does depend upon. This illustrates the value of dividing
drivers between cores in a similar way as the instances they serve. Historically, drivers
have been unreliable for various reasons and could be particularly vulnerable to attacks.
Thus, shared drivers are a likely avenue for attacks between instances. It is prudent
to limit driver sharing as much as possible, and to focus resources on validating the
remaining shared drivers.

It may be less convenient to use a mobile device with multiples instances of Android,
since it is necessary to switch between them, and it is often quite useful for apps to share
some data between themselves. NoCF can protect apps within a single-instance Android
system from each other in the presence of certain CPU flaws. For example, consider a
bug in the processor’s TLB that causes certain TLB flush operations to fail, such that
some TLB entries incorrectly remain. This could lead to a vulnerability if the OS swaps
out memory from one process and then allocates the newly-freed physical memory to
a different process. Accesses made by the first process to the virtual memory mapped
by the illegitimate TLB entries would be capable of accessing data belonging to the
second process. If we assume that those processes are on separate cores and that the OS
coordinates with the integrity kernel to only allow accesses from a specific core to the
memory currently allocated to code running on that core, then this vulnerability would
be blocked. We make no claims about whether this specific type of flaw is plausible,
beyond noting that the TLB of a popular processor did contain a serious flaw [59].

NoCF may be useful for constraining a kernel compromise within a single-instance
Android system to code running on a particular core. It would accomplish this by
restricting kernel code running on a particular core to only access data that is actually
relevant to its operation.

The primary challenge to implementing such a system is precisely that the kernel
normally assumes it has full access to the system. If the kernel or userspace code on
a core attempts to access a resource it has not been allocated, the reliability of the
system will be affected negatively. It is necessary to fully characterize all memory
accesses that may legitimately occur from every core and to concisely express those
permissions as a memory access control policy. Such a policy may need to control access
to irregularly-aligned and -sized objects, which may require the use of a different policy
format than the one discussed previously. For example, Mondrian Memory Protection
may be useful [69]. Note that the resultant system could exhibit a combination of the
best properties of microkernel and monolithic kernel systems, since parts of the kernel
could be isolated from each other while all parts of the kernel would still view the entire
kernel as directly-addressable space, without needing to perform explicit IPC to other
portions of the kernel. However, it is not yet clear that the accesses in a monolithic
kernel can be adequately characterized to make this feasible and sufficiently restricted
to substantially improve security.

Some interesting types of policies may be difficult to enforce efficiently given the
current level of visibility the integrity core has into the system and the relative simplicity
of the current interposer policy rule format. A promising future direction is to mark
certain memory regions as audited, so that extended information about accesses to those
regions would be forwarded to the integrity core to assist it in enforcing a complex

19

policy or monitoring those accesses. For example, this information could include the full
content about to be read from or written to the region. As an example of how this could
be useful, consider the possibility of restricting Android messages between apps. The
integrity core could monitor the application-level type information associated with the
message and block specific types of messages. This type of policy has been considered
in other work, although it was implemented differently [10].

6.2 Other Applications
Desktop and server systems may have similar problems with untrusted IP as mobile de-
vices, but their system topologies are substantially different and would require different
technical solutions to those problems. For example, a desktop CPU may communicate
over wires exposed on a motherboard to a chipset that provides access to peripherals,
and over a different set of wires to memory chips. Interposers would be required at each
location where a bus master connected to an interconnect, which would necessitate a
different NoCF topology and protocols. For example, error detection support would
be required in the protocol to handle errors introduced by transmitting data over wires
between chips. Thus, while this paper may be instructive for solutions on other types of
platforms, we focus on the unique characteristics of mobile devices.

Much of NoCF is specific to AMBA AXI4, but it could be ported to other types of
interconnects. To maintain maximum performance and to minimize the trusted comput-
ing base, NoCF should be thoroughly re-engineered to match the unique characteristics
of each type of interconnect.

We have already discussed the importance of protecting medical data on mobile
devices, but another important application for SoCs in this domain is in the construction
of specialized medical devices themselves [51].

A possible vulnerability in such devices could originate with the wireless interface
logic, since wireless is being used to communicate with an increasing number and
variety of devices. For example, the wireless driver in a blood glucose monitor may
contain a buffer overflow that could be exploited by some malicious display device to
install malware. That malware could cause the device to report incorrect readings to
other display devices that the individual uses as a source of data to be input into an
insulin delivery device. NoCF could be configured to isolate the wireless driver on a
dedicated core and prevent the malware from infecting the targeted functions of the
device outside of the wireless subsystem.

The position of the interposers would make them well-suited for enforcing policies
that regulate other aspects of accesses besides their locations. For example, DoS attacks
could be a concern within a system. The interposers could monitor the bandwidth and
other characteristics of communication flows that it forwards and block those that are
excessive.

6.3 Attestation
The stakeholders interested in each isolated software component may require assurances
that their software is properly protected. Such assurances can be provided in the form
of an attestation from NoCF that it is running a trusted integrity kernel that enforces an

20

acceptable policy. There are a variety of remote attestation systems that could be used
to accomplish that task [17].

An alternative approach is to enforce a whitelist, so that only integrity kernel code
on the whitelist is permitted to run at all. Seshadri et al. demonstrated such an approach
in software for kernel code [58]. LeMay and Gunter demonstrated how to implement
code whitelisting in an efficient manner using judicious hardware extensions [41].

7 Related Work
We consider two classes of related work: 1) tools and techniques that enable formal
reasoning about hardware and 2) efforts to enhance security protections for SoC/NoC
using hardware design. The primary novelty of NoCF is that it is a NoC access control
mechanism designed to be amenable to formal analysis.

7.1 High-Assurance Hardware Development
Advances have been made in languages for formally specifying information-flow prop-
erties in hardware like Caisson [43]. Tiwari et al. developed and verified an information-
flow secure processor and microkernel, but that was not in the context of a mobile-phone
SoC and involved radical modifications to the processor compared to those required by
NoC-based security mechanisms [63]. Volpano proposed dividing memory accesses
in time to limit covert channels [65]. Information-flow techniques could be generally
applicable to help verify the security of the trusted components identified in §3.1.

Other techniques are complementary to these lines of advancement in that they
offer approaches for satisfying the assumptions of our threat model. “Moats and
Drawbridges” is the name of a technique for physically isolating components of an
FPGA and connecting them through constrained interfaces so that they can be analyzed
independently [32, 33].

SurfNoC schedules multiple protection domains onto NoC resources in such a way
that non-interference between the domains can be verified at the gate level [66]. This
could complement NoCF by preventing unauthorized communications channels between
domains from being constructed in the NoC fabric.

Richards and Lester defined a shallow, monadic embedding of a subset of Bluespec
into PVS and performed demonstrative proofs using the PVS theorem prover on a 50-line
Bluespec design [55]. Their techniques may be complementary to our model checking
approach for proving properties that are amenable to theorem proving. Katelman defined
a deep embedding of BTRS into Maude [47]. BTRS is an intermediate language used by
the Bluespec compiler. Our shallow embedding has the potential for higher performance,
since we translate Bluespec rules into native Maude rules. Bluespec compilers could
potentially output multiple BTRS representations for a single design, complicating
verification. Finally, our embedding corresponds more closely to Bluespec code, which
could make it easier to understand and respond to output from the verification tools.

21

7.2 SoC/NoC Protection
The line of work about NoC access control started with the Security Enhanced Commu-
nication Architecture (SECA) [16], a mechanism for monitoring and controlling bus
data transfers using a variety of address- and value-based stateful and stateless policies.
Those policies provide a high level of expressiveness at the cost of increased complexity
compared to NoCF, which would complicate formal analysis. SECA is validated using
a multi-core mobile phone SoC containing a cryptoprocessor that shares a RAM with
the other cores and requires protection for its portion of the RAM.

Cotret et al. extended distributed address-based controls with support for encrypting
and monitoring the integrity of data sent to memory outside the SoC [19, 20]. These
mechanisms can address more powerful threats, but introduce additional area overhead
and latency.

Some NoC-based approaches use the main NoC to carry policy configuration traffic,
which is efficient and flexible [27]. One design uses dedicated virtual channels on
a shared NoC [22]. NoCF dedicates physically-separate interconnects between the
integrity core and interposers, making it simpler to determine that only an authorized
entity, the integrity core, can specify the policy.

NoC-MPU involves an MPU controlling each master’s access to the NoC [53]. Each
MPU uses policies stored in NoC-accessible memory as page tables and cached in
permission lookaside buffers. The policies are parameterized on memory addresses
and compartment identifiers. Compartment identifiers can distinguish software on a
single physical master device. The authors envision a “global trusted agent” running
on a dedicated processor to configure page tables, which is analogous to the NoCF
integrity kernel. Supporting in-memory page tables increases the complexity of each
MPU compared to NoCF interposers.

Kim and Villasenor focused on the threat of Trojan IP and implemented measures to
prevent illicit transfers that rely on the broadcast nature of a particular bus type [37].
A contribution of their paper that is complementary to NoCF is their approach for
dealing with availability attacks launched by malicious IP. They also briefly mention the
implications of protocol violations by Trojan IP, but do not analyze those in depth.

Other works have proposed encryption and integrity monitoring for sensitive code
and data in main memory [13, 68]. These confidentiality and integrity enforcement
techniques do not address access control for peripherals and any unencrypted data, so it
is still important to implement such access control in a verifiable manner.

Some NoC protection mechanisms have been developed commercially, but the
details of their designs and the analysis processes that have been applied to them are not
publicly available. Texas Instruments has applied for a patent on hardware technology
that includes the ability to restrict bus accesses and execute operating systems in isolation
on virtual cores [18].

ARM TrustZone defines secure and non-secure modes for virtual processor cores
and other bus masters [2]. Accesses from a master in non-secure mode may be restricted
by an interconnect or slave devices. Some aspects of divisions between virtual cores are
implemented internally by the physical core hosting them, improving resource sharing
but also increasing complexity compared to the approach in NoCF of concentrating the
PEP at the interconnect level to divide physical cores. NoCF also permits all bus masters

22

to be regulated independently, whereas TrustZone permits a secure virtual core to access
all system resources. However, TrustZone does allow certain other bus masters to be
restricted based on their identity. TrustZone also defines other types of SoC security
features.

Huffmire et al. proposed a mechanism to convert memory access policies into
Verilog that could be synthesized into a reference monitor [34]. They targeted re-
configurable systems in which the reference monitor could be replaced at runtime by
reconfiguring a portion of the FPGA. Such systems are not yet commonplace.

Individual cores or groups of cores on a Tilera Tile processor are capable of running
independent instances of Linux, and cores can be partitioned using hardware access
control mechanisms that block individual links between cores [67]. However, those
mechanisms are not applied to memory controller and cache links, which are regulated
using TLBs. NoCF could potentially be used to regulate such links.

8 Conclusion
Mobile devices that became popular for personal use are increasingly being relied
upon to process sensitive data, but they are not sufficiently trustworthy to make such
reliance prudent. Various software-based techniques are being developed to process
data with different levels of sensitivity in a trustworthy manner, but they assume that the
underlying hardware memory access control mechanisms are trustworthy. We discuss
how to validate this assumption by introducing a NoC Firewall that is amenable to
formal analysis. We present a prototype NoCF that is implemented using a hardware
description language with elegant semantics. We demonstrate its utility by using it to
completely isolate two Linux instances without running any hypervisor code on the
cores hosting the instances, and to block attacks from a malicious GPU.

Acknowledgments
This work was supported by HHS 90TR0003-01 (SHARPS) and NSF 13-30491 (ThaW).
The views expressed are those of the authors only. We measured lines of code using
David A. Wheeler’s ’SLOCCount’.

A revised version of this paper was published in Logic, Rewriting, and Concurrency.
The final publication is available at http://link.springer.com/chapter/
10.1007/978-3-319-23165-5_19.

References
[1] Bluespec SystemVerilog overview. Technical report, Bluespec, Inc., 2006.

[2] ARM security technology: Building a secure system using TrustZone R© technol-
ogy. Technical report, ARM, 2009.

[3] Is it smart for the US army to develop smartphones? Defense Industry Daily, Feb.
2011.

23

http://link.springer.com/chapter/10.1007/978-3-319-23165-5_19
http://link.springer.com/chapter/10.1007/978-3-319-23165-5_19

[4] SoC realization | the linchpin to enabling electronics innovation. Technical report,
Atrenta, San Jose, CA, USA, 2011.

[5] UP by jawbone with MotionX technology empowers you to live a healthier life.
Jawbone Press Release, Nov. 2011.

[6] S. Ackerman. New app guides commandos parachuting into danger. Wired
Magazine, Oct. 2011.

[7] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable bootstrap
architecture. In 18th IEEE Symposium on Security and Privacy, pages 65–71,
Oakland, CA, USA, May 1997.

[8] L. Arditi. Formal verification: So many applications. Design automation confer-
ence electronic chips & systems design initiative 2010 presentation, Anaheim, CA,
USA, June 2010.

[9] M. Beaumont, B. Hopkins, and T. Newby. Hardware trojans – prevention, detection,
countermeasures (A literature review). Technical Report DSTO-TN-1012, DSTO
Defence Science and Technology Organisation, Edinburgh, South Australia, July
2011.

[10] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and B. Shastry. Towards
taming privilege-escalation attacks on android. In 19th Network and Distributed
System Security Symposium, NDSS, San Diego, CA, USA, Feb. 2012. ISOC.

[11] M. Butcher. Check your skin for a melanoma? Yes, there’s an app for that too.
TechCrunch Europe Blog, June 2011.

[12] S. Butler. Managing IP quality in the SoC era. Electronic Engineering Times
Europe, page 5, Oct. 2011.

[13] D. Champagne and R. B. Lee. Scalable architectural support for trusted software. In
16th IEEE International Symposium on High Performance Computer Architecture,
HPCA, pages 1–12, Bangalore, India, Jan. 2010.

[14] R. Cheng. So you want to use your iPhone for work? Uh-oh. The Wall Street
Journal, Apr. 2011.

[15] A. Chopra. SMArt prize for patients, physicians, and researchers. The White
House, Mar. 2011.

[16] J. Coburn, S. Ravi, A. Raghunathan, and S. Chakradhar. SECA: Security-enhanced
communication architecture. In International Conference on Compilers, Archi-
tecture, and Synthesis for Embedded Systems, CASES, San Francisco, CA, USA,
Sept. 2005. ACM.

[17] G. Coker, J. Guttman, P. Loscocco, A. Herzog, J. Millen, B. O’Hanlon, J. Ramsdell,
A. Segall, J. Sheehy, and B. Sniffen. Principles of remote attestation. International
Journal of Information Security, Springer, 10:63–81, Apr. 2011.

24

[18] G. R. Conti, L. Petrosian, and A. Hussain. Virtual cores and hardware-supported
hypervisor integrated circuits, systems, methods and processes of manufacture.
Publication number: US 2007/0226795 A1 U.S. Classification: 726/22, Sept.
2007.

[19] P. Cotret, J. Crenne, G. Gogniat, J. Diguet, L. Gaspar, and G. Duc. Distributed se-
curity for communications and memories in a multiprocessor architecture. In 25th
IEEE International Symposium on Parallel and Distributed Processing Workshops
and PhD Forum, IPDPSW, pages 326–329, Anchorage, AK, USA, May 2011.

[20] P. Cotret, J. Crenne, G. Gogniat, and J.-P. Diguet. Bus-based MPSoC security
through communication protection: A latency-efficient alternative. In 20th IEEE
International Symposium on Field-Programmable Custom Computing Machines,
FCCM, pages 200–207, Toronto, Canada, Apr. 2012.

[21] I. Dalinger. Formal Verification of a Processor with Memory Management Units.
Dr.-Ing., Saarland University, Saarbrücken, Germany, June 2006.

[22] J. P. Diguet, S. Evain, R. Vaslin, G. Gogniat, and E. Juin. NOC-centric security of
reconfigurable SoC. In 1st ACM/IEEE International Symposium on Networks-on-
Chip, NOCS, pages 223–232, Princeton, NJ, USA, May 2007.

[23] S. Duffy. Doximity grows to nearly 5% of US physicians. medGadget Blog, Aug.
2011.

[24] S. I. Erwin. Smartphones-for-soldiers campaign hits wall as army experiences
growing pains. National Defense Magazine, June 2011.

[25] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. In 38th International Symposium on
Computer Architecture, ISCA, San Jose, CA, USA, June 2011. ACM.

[26] T. Eytan. Group health cooperative’s iPhone app – making nurses and doctors
accessible via mobile. Ted Eytan, MD Blog, July 2011.

[27] L. Fiorin, G. Palermo, S. Lukovic, V. Catalano, and C. Silvano. Secure memory
accesses on Networks-on-Chip. IEEE Transactions on Computers, 57(9):1216–
1229, Sept. 2008.

[28] R. Goering. Panelists discuss solutions to SoC IP integration challenges. Industry
Insights - Cadence Community, May 2011.

[29] K. Gotze. A survey of frequently identified vulnerabilities in commercial comput-
ing semiconductors. In 4th IEEE International Symposium on Hardware-Oriented
Security and Trust, HOST, pages 122–126, San Diego, CA, USA, June 2011.

[30] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. Defend, W. Mor-
gan, K. Fu, T. Kohno, and W. H. Maisel. Pacemakers and implantable cardiac
defibrillators: Software radio attacks and zero-power defenses. In 29th IEEE Sym-
posium on Security and Privacy, Oakland, pages 129–142, Oakland, CA, USA,
May 2008.

25

[31] W. J. Hennigan. Taking iPads into battle. Los Angeles Times, Sept. 2011.

[32] T. Huffmire, B. Brotherton, G. Wang, T. Sherwood, R. Kastner, T. Levin,
T. Nguyen, and C. Irvine. Moats and drawbridges: An isolation primitive for
reconfigurable hardware based systems. In 28th IEEE Symposium on Security and
Privacy, pages 281–295, Oakland, CA, USA, May 2007.

[33] T. Huffmire, C. Irvine, T. D. Nguyen, T. Levin, R. Kastner, and T. Sherwood.
Handbook of FPGA Design Security. Springer, 2010.

[34] T. Huffmire, S. Prasad, T. Sherwood, and R. Kastner. Policy-driven memory
protection for reconfigurable hardware. In 11th European Symposium On Research
In Computer Security, ESORICS, pages 461–478, Hamburg, Germany, Sept. 2006.
Springer.

[35] M. E. Johnson. Data hemorrhages in the health-care sector. In 13th International
Conference on Financial Cryptography and Data Security, pages 71–89, Barbados,
Feb. 2009. Springer.

[36] N. B. Johnson. Army to field tablets to manage medical records on battlefield.
FederalTimes, Aug. 2011.

[37] L. Kim and J. D. Villasenor. A System-On-Chip bus architecture for thwarting
integrated circuit trojan horses. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 19(10):1921–1926, Oct. 2011.

[38] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou. Designing
and implementing malicious hardware. In 1st USENIX Workshop on Large-scale
Exploits and Emergent Threats, LEET, San Francisco, CA, USA, Apr. 2008.
USENIX Association.

[39] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Winwood.
seL4: formal verification of an OS kernel. In 22nd ACM Symposium on Operating
Systems Principles, SOSP, pages 207–220, Big Sky, MT, USA, Oct. 2009.

[40] M. Lange, S. Liebergeld, A. Lackorzynski, A. Warg, and M. Peter. L4Android:
a generic operating system framework for secure smartphones. In Workshop on
Security and Privacy in Smartphones and Mobile Devices, SPSM, Chicago, IL,
USA, Oct. 2011. ACM.

[41] M. LeMay and C. A. Gunter. Enforcing executing-implies-verified with the
integrity-aware processor. In 4th International Conference on Trust and Trust-
worthy Computing, TRUST, pages 202–216, Pittsburgh, PA, USA, June 2011.
Springer.

[42] T. Lewis. Hallux angles augmented reality comes to mobile medical technology.
iMedicalApps Blog, July 2011.

26

[43] X. Li, M. Tiwari, J. K. Oberg, V. Kashyap, F. T. Chong, T. Sherwood, and
B. Hardekopf. Caisson: A hardware description language for secure information
flow. In 32nd ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI, pages 109–120, San Jose, CA, USA, June 2011.

[44] B. Lockhart and B. Gohn. Utility cyber security - seven key smart grid security
trends to watch in 2012 and beyond. Research report, Pike Research LLC, 4Q
2011.

[45] N. Martı́-Oliet, J. Meseguer, and A. Verdejo. A rewriting semantics for maude
strategies. In 7th International Workshop on Rewriting Logic and its Applications,
WRLA, pages 227–247, Budapest, Hungary, Mar. 2008. Elsevier.

[46] P. Meredith, M. Katelman, J. Meseguer, and G. Rosu. A formal executable
semantics of verilog. In 8th ACM/IEEE International Conference on Formal
Methods and Models for Codesign, MemoCODE, pages 179–188, Grenoble,
France, July 2010.

[47] Michael Kahn Katelman. A Meta-Language for Functional Verification. Ph.D.
Dissertation, University of Illinois at Urbana-Champaign, Urbana, Illinois, 2011.

[48] M. Mosquera. Data security critical with VA’s intro of iPhone. Healthcare IT
News, July 2011.

[49] S. S. Mukherjee, J. Emer, and S. K. Reinhardt. The soft error problem: An
architectural perspective. In 11th International Symposium on High-Performance
Computer Architecture, HPCA, pages 243–247, San Francisco, CA, USA, Feb.
2005. IEEE.

[50] C. Nachenberg. A window into mobile device security: Examining the security
approaches employed in Apple’s iOS and Google’s Android. Technical report,
Symantec Security Response, June 2011.

[51] A. Nanda and V. Ranjan. Adopting an SOC-based approach to designing handheld
medical devices. EE|Times, May 2009.

[52] N. Paul, T. Kohno, and D. C. Klonoff. A review of the security of insulin pump
infusion systems. Journal of Diabetes Science and Technology, 5(6):1557–1562,
Nov. 2011.

[53] J. Porquet, A. Greiner, and C. Schwarz. NoC-MPU: a secure architecture for
flexible co-hosting on shared memory MPSoCs. In Design, Automation and Test
in Europe, DATE, pages 1–4, Grenoble, France, Mar. 2011.

[54] R. Power, L. Cranor, M. Farb, C. Jackson, D. Goldschlag, M. Griss, V. Campus,
N. Christin, S. Joshi, A. Perrig, P. Tague, E. Tude, and M. Mistretta. Mobility and
security: Dazzling opportunities, profound challenges. Technical report, CMU
CyLab and McAfee, May 2011.

27

[55] D. Richards and D. Lester. A monadic approach to automated reasoning for Blue-
spec SystemVerilog. Innovations in Systems and Software Engineering, Springer,
7(2):85–95, Mar. 2011.

[56] E. T. Schubert, K. Levitt, and G. C. Cohen. Formal verification of a set of memory
management units. Contractor Report 189566, National Aeronautics and Space
Administration, Hampton, VA, USA, Mar. 1992.

[57] C. Schultz. FDA sanctioned mobile health apps making an appearance. iMedi-
calApps Blog, Oct. 2011.

[58] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: A tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In 21st ACM Symposium on
Operating Systems Principles, SOSP, pages 335–350, Stevenson, WA, USA, Oct.
2007.

[59] A. L. Shimpi. AMD’s b3 stepping phenom previewed, TLB hardware fix tested.
AnandTech, page 2, Mar. 2008.

[60] A. L. Shimpi. NVIDIA to acquire Icera, adds software baseband to its portfolio.
AnandTech.com, May 2011.

[61] W. Stomp. Cell phone-based imaging cytometry device for developing countries.
medGadget Blog, July 2011.

[62] J. Szefer, E. Keller, R. B. Lee, and J. Rexford. Eliminating the hypervisor attack
surface for a more secure cloud. In 18th ACM Conference on Computer and
Communications Security, CCS, Chicago, IL, USA, Oct. 2011.

[63] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levin, B. Hardekopf, R. Kastner,
F. T. Chong, and T. Sherwood. Crafting a usable microkernel, processor, and I/O
system with strict and provable information flow security. In 38th International
Symposium on Computer Architecture, ISCA, pages 189–200, San Jose, CA, USA,
June 2011. ACM.

[64] J. Villasenor. Ensuring hardware cybersecurity. The Brookings Institution, May
2011.

[65] D. Volpano. Towards provable security for multilevel reconfigurable hardware.
Technical report, Naval Postgraduate School, 2008.

[66] H. M. G. Wassel, Y. Gao, J. K. Oberg, T. Huffmire, R. Kastner, F. T. Chong, and
T. Sherwood. SurfNoC: a low latency and provably non-interfering approach to
secure networks-on-chip. In 40th International Symposium on Computer Architec-
ture, ISCA, pages 583–594, Tel-Aviv, Israel, June 2013. ACM.

[67] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,
C.-C. Miao, J. F. Brown III, and A. Agarwal. On-chip interconnection architecture
of the Tile processor. IEEE Micro, 27(5):15–31, Sept. 2007.

28

[68] P. Williams and R. Boivie. CPU support for secure executables. In 4th Interna-
tional Conference on Trust and Trustworthy Computing, TRUST, pages 172–187,
Pittsburgh, PA, USA, June 2011. Springer.

[69] E. Witchel, J. Cates, and K. Asanović. Mondrian memory protection. In 10th
International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS-X, pages 304–316, San Jose, CA, USA, Oct.
2002. ACM.

[70] F. Wodajo. Future uses for the iPad in the operating room: a game changer?
iMedicalApps Blog, Sept. 2011.

[71] T. Zakaria. Not so simple: U.S. spy agency trying to go mobile. Reuters, Sept.
2011.

A Integrity Kernel
This appendix provides pseudocode listings for the integrity kernel. It focuses on the
version of the prototype that uses a dedicated FSL link for each interposer, but there
are only minor differences between that version and the version based on a shared AXI
interconnect.

A key difference between this integrity kernel and one based on MMU or IO-MMU
protections is that it does not need to configure memory protections for itself. The
integrity kernel is installed in a dedicated region of memory that is inaccessible from
the other cores in the system.

The integrity kernel only implements functionality to configure memory protections,
resulting in a very small TCB. Microkernels are alternative pieces of software that
can implement memory protections, but they sometimes implement many other func-
tions that result in a larger TCB, such as inter-process communication and scheduling.
Monolithic kernels typically have even larger TCBs.

Listing 1 Main entrypoint.
procedure MAIN

INTRCONTROLLERINIT . Library call to initialize interrupt controller.
for all i ∈ Intrs do . Intrs is a global variable with information about each

interrupt line. Each interposer has a dedicated interrupt line.
INTRCONTROLLERSETUP(i,HandleIntr) . Library calls to

configure interrupt controller to cause a specific interrupt signal to invoke a shared
interrupt handler routine.

end for
INTRCONTROLLERSTART . Start handling interrupts.
while > do . Wait forever, handling interrupts. Kernel never exits, except when

the system is powered down.
end while

end procedure

29

Listing 2 Interrupt handler.
procedure HANDLEINTR(intrId)

intrData← RECEIVEINTR(intrId) . Retrieve information about the blocked
access that caused the interrupt.

regionSize← CALCULATEREGIONSIZE(intrData) . Calculate size of region of
memory that should be granted to accessing master IP. This routine is implemented
as a collection of case statements that take as parameters the identity of the master IP
and the memory region being accessed.

if regionSize 6= 0 then . A region size of zero signifies a denied access.
GRANT(intrId, intrData.baseAddress, regionSize) . intrData.baseAddress

specifies the base address of the region of memory being accessed.
end if
ENFORCE(intrId, intrData.isReadAccess)
INTRCONTROLLERACKINTR(intrId) . Library call to acknowledge handling

the interrupt.
end procedure

Listing 3 Insert new policy rule to grant access to a memory region.
procedure GRANT(intrId, baseAddress, regionSize)

command← BUILDCOMMAND
(NewRule, baseAddress, regionSize) . BUILDCOMMAND is actually

implemented as a simple series of bitwise operations to construct a 32-bit command
to be sent to the interposer.

SENDCOMMAND(intrId, command)
end procedure

Listing 4 Send command to interposer.
procedure SENDCOMMAND(intrId, command)

FSLSENDCOMMAND(command, intrId) . Library call to send command data
over FSL interconnect.
end procedure

Listing 5 Retrieve data about interrupt from interposer.
procedure RECEIVEINTR(intrId)

raw← FSLRECEIVECOMMAND(intrId) . Library call to read command data
over FSL interconnect.

return DECODEINTRDATA(raw) . Decode the 32-bit representation of the
interrupt cause into a structure that can be easily processed.
end procedure

30

Listing 6 Command the interposer to re-evaluate the blocked access relative to the
updated access control rules.

procedure ENFORCE(intrId, isRead) . isRead should be set to true if the blocked
access is a read, and false if it is a write.

if isRead then
command← BUILDCOMMAND(EnforceRead)

else
command← BUILDCOMMAND(EnforceWrite)

end if
SENDCOMMAND(intrId, command)

end procedure

B NoCF Hardware
This appendix presents details of the Bluespec hardware design for the components
described in this paper.

We defined two types of parameterized basic interfaces, one each for unbuffered
inputs and outputs. They are parameterized on the type of data that is passed through the
interface. The interface that represents inputs into the interposer declares two methods.
One allows the hardware communicating with the interposer to transfer a unit of data.
The other indicates whether the interposer is ready to receive input on the interface. The
methods for the output interface are similar. One allows the interposer to transfer a unit
of data to hardware outside the interposer, and the other allows that hardware to indicate
to the interposer when data can be sent over the interface.

We aggregate one each of unbuffered input and output interfaces that transfer AXI
address requests to form an address filter interface. The address filter interface also
defines two additional methods that are used internally within the interposer. The first
returns the current address request being processed, and the second is used to inform
the address filter of an access control decision for the current request.

The address filter is always in one of three states: idle, committed, or waiting. It
is initially in the idle state. Its state also includes information on the current address
request being issued by the regulated AXI master, the address request that was most
recently committed (see section 5 for a discussion of why it is necessary to commit each
address request), and three pulse wires. A Bluespec pulse wire is used for signaling
between methods within a single clock cycle. The pulse wires indicate whether the
committed address request is valid, whether the address request was forwarded in the
current clock cycle, and whether the current address request is compliant with policy,
respectively.

A filter must be in the idle state to accept a new address request. It will remain in
the idle state if the NoC fabric is ready to receive the request and if any of the policy
rules stored in the interposer allow the request, since the request can be passed through
the interposer during that same cycle in such a case. If any of the policy rules stored
in the interposer allow the request, but the NoC fabric is not yet ready, then the filter
transitions to the waiting state. Otherwise, it enters the committed state. The request is

31

buffered during both the waiting and committed states.
A filter in the committed state waits for an access control decision from the integrity

core. A negative decision will cause the filter to return to the idle state without transfer-
ring the buffered request to the NoC fabric. A positive decision will cause a transition
to the idle state if the NoC fabric is ready to receive the request, and to the waiting state
otherwise.

A filter in the waiting state simply waits for the NoC fabric to become ready to
accept the buffered request. It then transitions back to the idle state.

A collection of unbuffered interfaces are aggregated to form a single master or
slave AXI interface. All of the unbuffered interfaces in the master interface are directly
connected to the corresponding interfaces in the slave interface, with the following
exceptions. First, the read and write response channels are temporarily taken over by
the interposer when the interposer is sending a response due to a blocked request. The
interposer also notifies the connected slave device that it is not ready to receive response
data during such an event. Finally, each of the address request channels is routed through
an address filter.

The interposer sends each faulting address to the integrity core along with a bit
indicating whether a read or write was attempted to or from that address. The integrity
core can respond with a specification for a new rule that the interposer should install.
It comprises a partial address, two bits indicating whether reads and/or writes are
permitted, and four bits defining the size of the covered address range.

The FSL master interface enqueues an outgoing transfer to a FIFO between the
interposer and the integrity core when the FIFO has available storage space, blocking
when the FIFO is full. The FSL slave interface accepts incoming transfers from the
FIFO.

The top-level interposer interface aggregates one each of an AXI master and slave
interface, and one each of an FSL master and slave interface.

The main NoCF module can hold a configurable number of rules at any point in
time. The number is set at the time the hardware is defined. By default, none of the
policy rules allow anything.

Both of the read and write channels can each be in one of the following states: permit,
enforce, request, wait, check, respond, or resume. The permit state is not actually not
ordinarily used, but we added dormant support for it so that it can be used for debugging.
Each channel has an address filter interface.

The relative age of each policy rule is tracked, so that the oldest one can be replaced
when necessary.

Both directions of the FSL interface are buffered using FIFOs.
We defined a function to check each policy rule against each address request on

either the read or write channel, with an argument to indicate whether a read or write
request is being evaluated. The function compares the relevant portion of the addresses
in the request and the policy rule (depending on the region size defined in the policy
rule) and returns whether the rule allows the request if it matches. We defined a second
function to invoke the former function on all policy rules in parallel and return true if
any rule allows the request.

For each channel, the current request (if any) is checked against the policy and the
decision is made available to other parts of the interposer that need it. There are two

32

possible exceptions to this. First, no decisions are issued when the policy is currently
being updated. Second, an allow decision is issued whenever the policy is not being
updated and the channel is currently in the permit state.

When a channel is in the permit or enforce states and an allow decision was issued
in the current cycle as described above, then that decision is sent to the address filter for
that channel. The address filter’s response to that decision is described above.

If a channel is in the enforce state and a deny decision was issued in the current
cycle, then that channel transitions to the request state.

During the single cycle in which a channel is the request state, it enqueues an FSL
transfer with information about the AXI request that is pending, including whether it is
a read or write request and the address. The channel then transitions to the wait state.
The channel remains in the wait state until the integrity core sends a packet specifically
indicating that the channel should transition to the check state.

A channel in the check state forwards the decision derived from the updated policy to
the address filter interface and then transitions to the resume state for an allow decision
or the respond state for a deny decision. It also stores the ID for the current AXI request.
In addition to that, the read channel also stores the length of the read request.

A channel in the resume state transitions to the enforce state in the next cycle. The
resume state could be eliminated from the design to slightly reduce latency without any
degradation in functionality.

A channel in the respond state sends a decode error response back to the master
device, which is the same type of error that would be sent if a missing device had been
addressed. The write channel then transitions to the enforce state. The read channel
maintains the decode error response for the number of cycles required by the AXI
protocol and then transitions to the resume state.

33

	1 Introduction
	2 Background
	2.1 Mobile Device Applications
	2.2 System-on-Chip Technology

	3 Design
	3.1 Threat Model
	3.2 Core-Based Isolation
	3.3 NoCF Interposers

	4 Evaluation
	4.1 Prototype Implementation and Hypervisor Functionality
	4.2 Constraining a Malicious GPU
	4.3 Hardware Resource Usage

	5 Formal Analysis
	6 Discussion
	6.1 Protecting Full-Featured Devices
	6.2 Other Applications
	6.3 Attestation

	7 Related Work
	7.1 High-Assurance Hardware Development
	7.2 SoC/NoC Protection

	8 Conclusion
	A Integrity Kernel
	B NoCF Hardware

