
A normal form for stateful connectors?

Roberto Bruni1, Hernán Melgratti2, and Ugo Montanari1

1 Department of Computer Science, University of Pisa, Italy
2 Departamento de Computación, FCEyN, Universidad de Buenos Aires - Conicet,

Argentina

Abstract. In this paper we consider a calculus of connectors that allows
for the most general combination of synchronisation, non-determinism
and buffering. According to previous results, this calculus is tightly re-
lated to a flavour of Petri nets with interfaces for composition, called
Petri nets with boundaries. The calculus and the net version are equipped
with equivalent bisimilarity semantics. Also the buffers (the net places)
can be one-place (C/E nets) or with unlimited capacity (P/T nets). In
the paper we investigate the idea of finding normal form representations
for terms of this calculus, in the sense that equivalent (bisimilar) terms
should have the same (isomorphic) normal form. We show that this is
possible for finite state terms. The result is obtained by computing the
minimal marking graph (when finite) for the net with boundaries corre-
sponding to the given term, and reconstructing from it a canonical net
and a canonical term.

Keywords: algebras of connectors, Petri nets with boundaries

1 Introduction

One of the foci of our long-standing collaboration with José Meseguer has been
concerned with the algebraic properties of Petri nets and their computations,
exploiting suitable symmetric (strict) monoidal categories [22,14,23,13]. In the
context of the ASCENS project3, we have recently investigated a flavour of
composable Petri nets, called Petri nets with boundaries, originally proposed
by Pawel Sobocinski in [28]. Petri nets with boundaries should not be confused
with bounded nets: the former come equipped with left/right interfaces for com-
position, the latter require the existence of a bound on the number of tokens
that can be present in the same place during the computation. Petri nets with
boundaries allow to conveniently model stateful connectors in component-based
systems and have been related to other widely adopted component-based frame-
works, like BIP [4], in [10]. In particular we have shown in [12] that they are

? This research was supported by the EU project IP 257414 (ASCENS), EU 7th FP
under grant agreement no. 295261 (MEALS), by the Italian MIUR Project CINA
(PRIN 2010/11), and by the UBACyT Project 20020130200092BA.

3 http://www.ascens-ist.eu/

http://www.ascens-ist.eu/

equivalent to the algebra of stateless connectors from [8] extended with one-
place buffers. In this paper we consider an algebra of connectors that allow for
the most general combination of synchronisation, non-determinism and buffering
and investigate the idea of finding a normal form representation for terms of this
algebra, under some finiteness hypotheses.

Component-based design is a modular engineering practice that relies on
the separation of concerns between coordination and computation. Component-
based systems are built from loosely coupled computational entities, the compo-
nents, whose interfaces comprise the number, kind and peculiarities of commu-
nication ports. The term connector denotes entities that glue the interaction of
components [25], by imposing suitable constraints on the allowed communica-
tions. The evolution of a network of components and connectors is as if played in
rounds: At each round, the components try to interact through their ports and
the connectors allow/disallow some of the interactions selectively. A connector
is called stateless when the interaction constraints it imposes are the same at
each round; stateful otherwise.

In the case of the algebra of stateless connectors [8], terms are assigned input-
output sorts, written P : (n,m) or P : n → m, where n is the arity (i.e., the
number of ports) of the left-interface and m of the right-interface. Terms are
constructed by composing in series and in parallel five kinds of basic connectors
(and their duals, together with identities I : (1, 1)) that express basic forms of
(co)monoidal synchronisation and non-determinism: (self-dual) symmetry X :
(2, 2), synchronisation ∇ : (1, 2) and

∇

: (2, 1), mutual exclusion ∧ : (1, 2) and
∨ : (2, 1), hiding ⊥ : (1, 0) and > : (0, 1), and inaction ⊥ : (1, 0) and > : (0, 1).
The parallel composition P1 ⊗ P2 of two terms P1 : (n1,m1) and P2 : (n2,m2)
has sort (n1 + n2,m1 +m2) and corresponds to put the two connectors side by
side, without interaction constraints between them. The sequential composition
P1;P2 : (n,m) is defined only if the right-interface k of P1 : (n, k) matches with
the left-interface of P2 : (k,m) and corresponds to plug together such interfaces,
enforcing port-wise synchronisation. It is immediate to see that each term P :
(n,m) has a corresponding dual P c : (m,n) (defined recursively by letting (P1⊗
P2)c = P c1 ⊗ P c2 and (P1;P2)c = P c2 ;P c1) and a normal form axiomatisation
is provided in [8] whose equivalence classes form a symmetric strict monoidal
category (PROduct and Permutation category, PROP [21,16]) of so-called tick-
tables. All such connectors are stateless.

The simplest extension to stateful connectors consists of adding one-place
buffers as basic terms: © : (1, 1) denotes the empty buffer, willing to receive a
“token” when an action is executed on its left port; and ©· : (1, 1) denotes the
full buffer, willing to give the “token” away when an action is executed on its
right port. This way, certain interactions can be dynamically enabled or disabled
depending on the presence or absence of “tokens” in the buffers. Such stateful
connectors can be put in correspondence with Petri nets with boundaries up to
bisimilarity [28,9,12]. In fact, the operational semantics of connectors and Petri
nets with boundaries can be expressed in terms of labelled transition systems
(LTS) whose labels are pairs (a, b) with a being a string that describes the

actions observed on the ports of the left-interface and b those on the right-
interface. In our case a basic action observed on a single port is a natural number,
describing the number of firings on which that port is involved, or equivalently,
the number of “tokens” travelling on that port; therefore a and b are strings of
natural numbers. A transition with such an observation is written P

a−→
b P ′. In

the case of connectors, states are terms of the algebra, while in the case of nets
states are markings. In both cases the “sizes” of the interfaces are preserved by
transitions, e.g., if P

a−→
b P ′ and P : (n,m), then |a| = n, |b| = m and P ′ : (n,m).

Interestingly, the abstract semantics induced by ordinary bisimilarity over such
LTS is a congruence w.r.t. sequential and parallel composition. Regarding the
correspondence, first, it is shown that any net N : m→ n with initial marking X
can be associated with a connector TNX : (m,n) that preserves and reflects the
semantics of N . Conversely, for any connector P : (m,n) there exists a bisimilar
net {[P]} : m→ n defined by structural recursion on P . Roughly, in both cases,
the one-place buffers of the connector correspond to the places of the Petri net.

The problem of finding an axiomatisation for stateful connectors such that
normal forms can be found for bisimilarity classes is complicated by the fact that
the number of buffers is not preserved by bisimilarity: the same “abstract state”
can be described by a different combination of places. As a simple example, take
a net with two transitions α and β and a place p whose pre-set is {α} and whose
post-set is {β}. Clearly if p is substituted by any number of places connected in
the same way to α and β, then the overall behaviour is not changed.

The solution provided here is to translate a term P to the corresponding net
{[P]}. Then we build the marking graph of {[P]}. It must be finite because only
a finite number of markings exist. Moreover we observe that marking graphs
can be represented up to bisimilarity by a Petri net with boundaries that has
one place for each reachable marking of {[P]} (i.e., one place for each state of
the marking graph). Finally, the translation of such net to the corresponding
connector gives a canonical representation of P , in the sense that any other
term P ′ bisimilar to P will yield the same term (up to suitable permutations).

The same procedure can be followed when Place/Transition (P/T) Petri nets
with boundaries are considered. In this case, places capacity is unconstrained,
i.e., a place can contain any number of tokens. Correspondingly, we start from
terms of the P/T Petri calculus, where the basic constructors © and ©· are
replaced by a denumerable set of constructors LnM for any natural number n, each
representing a buffer with n tokens. Given the correspondence in [12], between
P/T Petri calculus terms and P/T nets with boundaries, we can again translate
a term P to the corresponding net {[P]}, but building a finite marking graph
of {[P]} requires the net to be bounded.4 This is equivalent to require that only
a finite set of terms is reachable from the term P via transitions. The marking
graph can then be minimised (w.r.t. the number of states, up to bisimilarity)
and translated to an equivalent P/T Petri calculus term.

4 Formally, a net is bounded if ∃k ∈ N such that in any reachable marking the number
of tokens in any place is less than or equal to k, i.e., k is a bound for the capacity of
places. Note that the marking graph of a net is finite iff the net is bounded.

LnM : ◦ n ◦ X :
◦ ◦

◦ ◦
I : ◦ ◦

∇ :

◦
◦

◦

∇

:

◦
◦

◦
⊥ : ◦ �

∧ :

◦
◦ +

◦
∨ :

◦
◦+

◦
> :

� ◦

↑ : ◦ • ↓ : • ◦

Fig. 1. Graphical representation of terms

Structure of the paper. Section 2 introduces the P/T and the C/E Petri cal-
culi, together with their bisimilarity semantics. Section 3 recalls Petri nets with
boundaries and their tight correspondence with Petri calculi. Section 4 shows
how to obtain a normal form for a P/T Petri calculus term P by computing
the minimal marking graph for {[P]} and from it a canonical P/T Petri net N .
Finally, the canonical form of P is obtained by mapping N back into a term of
the P/T calculus. A similar process is outlined in Section 5 for terms of the C/E
Petri calculus. Section 6 concludes the paper.

2 Petri calculi

As a matter of presentation, along the paper we find it convenient to present
first the more general version (P/T case) of the definition and constructions,
because it can be largely reused in the simpler case (C/E).

2.1 The P/T Petri calculus

The P/T calculus is an algebra of connectors that mixes freely elementary syn-
chronization constraints with mutual exclusion and (unbounded) memory. It is
obtained by extending the algebra of stateless connectors with a denumerable
set of constants LnM (one for any n ∈ N), each of them representing a buffer that
currently contains n data items, aka tokens.

The syntax of terms of the P/T Calculus is below, where n ∈ N.

P ::= LnM buffer with n data items
| I identity wire | X twist
| ∇ |

∇

duplicator and its dual | ⊥ | > hiding and its dual
| ∧ | ∨ mutex and its dual | ↓ | ↑ inaction and its dual
| P ⊗ P parallel composition | P ; P sequential composition

The diagrammatical representation of terms is shown in Fig. 1. Any term P
has a unique associated sort (k, l) with k, l ∈ N, that fixes the size k of the left
interface and the size l of the right interface of P (see Fig. 2).

LnM : (1, 1) I : (1, 1) X : (2, 2) ∇ : (1, 2)

∇

: (2, 1)

⊥ : (1, 0) > : (0, 1) ∧ : (1, 2) ∨ : (2, 1) ↓: (1, 0) ↑: (0, 1)

P1 : (k, l) P2 : (m,n)

P1 ⊗ P2 : (k +m, l + n)

P1 : (k, n) P2 : (n, l)

P1 ; P2 : (k, l)

Fig. 2. Sort inference rules

n, h, k ∈ N k ≤ n
(TkIOn,h,k)

LnM h−→
k Ln+ h− kM

k ∈ N
(Idk)

I
k−→
k I

h, k ∈ N
(Twh,k)

X
hk−−→
kh X

k ∈ N
(∇k)

∇ k−→
kk ∇

k ∈ N
(

∇

k)∇kk−−→
k

∇

k ∈ N
(⊥k)

⊥ k−→ ⊥

k ∈ N
(>k)

> −→k >

h, k ∈ N
(∧h,k)

∧ h+k−−−→
hk ∧

h, k ∈ N
(∨h,k)

∨ hk−−→
h+k ∨

(↓)
↓ 0−→ ↓

(↑)
↑ −→0 ↑

P
a−→
b Q R

c−→
d S

(Ten)
P ⊗R ac−−→

bd Q⊗ S

P
a−→
c Q R

c−→
b S

(Cut)
P ; R

a−→
b Q ; S

Fig. 3. Operational semantics of P/T calculus

The operational semantics is defined by means of the LTS in Fig. 3 whose
states are terms P of the algebra and whose transitions are labelled by pairs
(a, b) ∈ N∗ × N∗, written P

a−→
b P ′, where if P : (k, l) then |a| = k, |b| = l and

P ′ : (k, l). For each i ∈ {1 . . . k}, ai is the number of actions executed on the i-th
port of the left interface. Analogously, for each j ∈ {1 . . . l}, bj is the number of
actions executed on the j-th port of the right interface. Since data items can be
created and deleted, but all connectors are maintained by the rules, the target P ′

preserves the overall structure of P (i.e., P and P ′ can differ only for sub-terms
of the form LnM).

We remark that some of the rules are more precisely schemes. For instance,
there is one particular instance of rule (TkIOn,h,k) for any possible choice of n, h
and k. We think the rules are self-explanatory: Rule (TkIOn,h,k) models the case
where a buffer with n tokens releases k ≤ n tokens and receives h new tokens
in the same step; at the end n + h − k tokens are left in the buffer. Rule (Idk)

and (Twh,k) just (re)wires the observation on the left interface to the one on the
right. Rules (∇k) and (

∇

k) enforce action synchronization on all ports. Rules (⊥k)

and (>k) hide any action on its interface. Rules (∧h,k) and (∨h,k) mix the actions
observed on the interface with two ports. Rules (↓) and (↑) enforce inaction on
their (single) ports. Finally, rules (Ten) and (Cut) deal with parallel and sequential
composition.

Notably, the induced bisimilarity is a congruence w.r.t. ⊗ and ; [12].

n ◦
�

◦
(a) Pn.

◦
�

m ◦
(b) Qm.

n
� ◦

� ◦

m

(c) Dn,m.

◦

n �

�

� ◦

m

(d) Bn,m.

Fig. 4. Petri calculus term for a buffer of capacity n

Example 1. As an example, we show one possible way to represent a buffer with
capacity n. First, let Pn = > ; ∇ ; (LnM⊗ I) : (0, 2) and Qm = > ; ∇ ; (I⊗ LmM) :
(0, 2) shown in Fig. 4(a) and 4(b). It is immediate to check that, for any h ≤ n the
only transitions for Pn are of the form Pn −→hk Pn+k−h and symmetrically, for Qm
and k ≤ m, are of the form Qm −→hk Qm+h−k. Let C = (I⊗X⊗ I) ; (

∇

⊗

∇

) : (4, 2).
Again, it is immediate to check that the only transitions for C are of the form

C
hkhk−−−−→
hk C. Then, let Dn,m = (Pn⊗Qm) ; C : (0, 2) shown in Fig. 4(c). We have

that Dn,m −→hk Dn+k−h,m+h−k with h ≤ n and k ≤ m. Note that (n − h + k) +
(m − k + h) = n −m, i.e., the numbers of tokens in the connector is invariant
under transitions. Thus, the term Bn,m = (I⊗Dn,m) ; ((

∇

; ⊥)⊗ I) : (1, 1) shown

in Fig. 4(d) has transitions Bn,m
h−→
k Bn+k−h,m+h−k with h ≤ n and k ≤ m and

Bn,0 is a buffer of capacity n (the sub-term Pn counts the free positions of the
buffer, while Q0 the busy ones).

2.2 The C/E Petri calculus

It is quite common to impose some capacity over buffers. For example, we could
think to consider only buffers of the form Lc, nM with n ≤ c, where n is the number
of tokens in the buffer and c is its maximal capacity. In this case, the transition

Lc, nM h−→
k Lc,mM would be possible only if k ≤ n and h ≤ c−n with m = n+h−k.

(Lc, nM roughly corresponds to the process Bc−n,n from Example 1).
In this section we focus on the simplest such case, where buffers have ca-

pacity one, also called one-place buffers. The corresponding calculus, originally

(TkI)
© 1−→

0
©·

(TkO)
©· 0−→

1
©

(TkE)
© 0−→

0
©

(TkF)
©· 0−→

0
©·

Fig. 5. Operational semantics for the one-place buffer (of the C/E Petri Calculus)

introduced in [28], can be seen as the consequent restriction of the P/T Petri cal-
culus to operate over one-place buffers; in Petri net terminology, this restriction
is called Condition/Event (C/E). Terms of the C/E Petri Calculus are defined
by the grammar:

P ::= © | ©· | I | X | ∇ |

∇

| ⊥ | > | ∧ | ∨ | ↓ | ↑ | P ⊗ P | P ; P

The constructors are the same as the ones of P/T calculus except for © and
©· that respectively mimic the behaviour of L0, 1M and L1, 1M. As before, any term
P has a unique associated sort, with © : (1, 1) and ©· : (1, 1) (remaining cases
are defined as in Fig. 2).

The operational semantics is then defined by replacing Rule (TkIOn,h,k) in
Fig. 3 with the four rules in Fig. 5, representing respectively: the arrival of a
token in the empty buffer (rule (TkI)); the release of a token from the full buffer
(rule (TkO)); the inactivity of the empty/full buffer (rules (TkE), (TkF)).

Remark 1. The semantics of the C/E Petri calculus presented here slightly dif-
fers from the original one in [28] and all its variants considered in [12]. If we
restrict to consider stateless connectors, i.e., terms not involving© and©· , then
their semantics is the one called ‘weak’ in [12], whereas the ‘strong’ semantics
would allow only one action at a time to take place in a port, e.g., only transi-

tions ∧ 0−→
00
∧, ∧ 1−→

10
∧ and ∧ 1−→

01
∧ would be considered for the connector ∧.

Differently from the weak case, here we forbid tokens to traverse buffers during
a step, in agreement with the classical C/E semantics where a loop cannot fire.
However, other variants can be nicely accounted for by changing the rules for
© and ©· . For example, consume/produce loops can be dealt with by adding

the transition©· 1−→
1 ©· . On the one hand, we think the semantics proposed here

improves the correspondence between C/E Petri calculus and C/E Petri nets
with boundaries (avoiding the use of the ‘contention’ relation from [12]) and, on
the other hand, it yields a more uniform definition with the P/T case, preserving
all good properties, like bisimilarity being a congruence w.r.t. ⊗ and ;.

Example 2. A buffer with capacity n can be represented by combining n buffers
of capacity 1: we just let B1 =© : (1, 1) and Bn+1 = ∧ ; (Bn ⊗©) ; ∨ : (1, 1).

3 Nets with boundaries

Nets with boundaries extends ordinary Petri nets by equipping them with left
and right interfaces made of ports. Ports are different from places in that places
in the pre-set of a transition α impose a bound on the number of instances of

α that can be fired concurrently, while ports do not. In fact ports can account
for an unbounded number of instances of transitions attached to them to fire
concurrently. This is desirable, not an anomaly, because we can account for any
execution context in which the nets with boundaries are plugged in.

3.1 P/T Petri nets with boundaries

Petri nets [26] consist of places, which are repositories of tokens, and transitions
that remove and produce tokens. Places of a Place/Transition net (P/T net) can
hold zero, one or more tokens and arcs are weighted. The state of a P/T net is
described in terms of (P/T) markings, i.e., (finite) multisets of tokens.

A multiset on a set X is a function X → N. The set of multisets on X is
denoted MX . We let U ,V range over MX . For U ,V ∈ MX , we write U ⊆ V
iff ∀x ∈ X : U(x) ≤ V(x) and we use the usual multiset operations for union
(∪), difference (−) and scalar multiplication (·). We use ∅ ∈MX for the empty
multiset s.t. ∅(x) = 0 for all x ∈ X and we write x for the singleton multiset U
such that U(x) = 1 and U(y) = 0 for all y 6= x. Given a finite X, if f : X →MY

and U ∈ MX then we shall abuse notation and write f(U) =
⋃
x∈X U(x) · f(x).

Definition 1 (P/T net). A P/T net is a 4-tuple (P, T, ◦−, −◦) where: P is
a set of places; T is a set of transitions; and ◦−,−◦ : T → MP are functions
assigning pre- and post-sets to transitions.

Let X ∈MP , we write NX for the marked P/T net N with marking X .

Definition 2 (P/T step semantics). Let N = (P, T, ◦−, −◦) be a P/T net,
X ,Y ∈MP . For U ∈ MT a multiset of transitions, we write:

NX →U NY
def
= ◦U ⊆ X , U◦ ⊆ Y & X − ◦U = Y − U◦.

The remaining of this section recalls the composable nets proposed in [28].
Due to space limitation, we refer to [12] for a detailed presentation. In the fol-

lowing we let n range over finite ordinals, i.e., n
def
= {0, 1, . . . , n− 1}.

Definition 3 (P/T net with boundaries). Let m,n ∈ N. A (finite) P/T net
with boundaries N : m→ n is a tuple N = (P, T, ◦−,−◦, •−,−•), where:

− (P, T, ◦−,−◦) is a finite P/T net;
− •− : T →Mm and −• : T →Mn are functions that bind transitions to the

left and right boundaries of N ;

Let X ∈MP , we write NX for the P/T net N with boundaries whose current
marking is X . Note that, for any k ∈ N, there is a bijection p−q : Mk → Nk
between multisets on k and strings of natural numbers of length k, defined by

pUqi
def
= U(i), namely, the i-th natural number in the string pUq assigned to

the multiset U is the multiplicity of the i-th port in U . For example, given the
multiset U = {0, 0, 2} ∈ M4 we have pUq = 2 0 1 0.

•
��

p

α1

..

β1

nn

��•

//

//

��

??q

•

α2

..

β2

nn HH

??r

(a) Pp.

��

p

•
•

• // γ

))

55 •
ww

77

q

δ //

ii

uu
•

FF
r

(b) Q2pq.

• // γ

))

55 •
ww

77

q

δ //uu
•

FF
r

(c) Rq.

• // γ // //
r

δ //•

(d) S∅.

• // β //•

(e) I.

Fig. 6. Five marked P/T nets with boundaries

Definition 4 (P/T Labelled Semantics). Let N = (P, T, ◦−,−◦, •−,−•) be
a P/T net with boundaries and X ,Y ∈MP . We write

NX
a−→
b NY

def
= ∃U ∈ MT s.t. NX →U NY , a = p•Uq & b = pU•q. (1)

Example 3. Figure 6 shows five different marked P/T nets with boundaries.
Places are circles and a marking is represented by the presence or absence of
tokens; rectangles are transitions and arcs stand for pre- and post-set relations.
The left (respectively, right) interface is depicted by points situated on the left
(respectively, on the right). Figure 6(a) shows the marked net Pp : 1 → 1 con-
taining three places, four transitions and initially marked with one token in place
p. Figure 6(b) shows the marked net Q2pq : 1 → 1 containing three places, two
transitions and initially marked with two tokens in p and one in q. These two
nets are bisimilar: they both model a buffer with capacity two, in which mes-
sages are produced over the left interface and consumed over the right interface.
Figures 6(c) and 6(d) show two different models for unbounded buffers. They
are not bisimilar: while Rq serialises all operations on the buffer, S∅ allows for
the concurrent production/consumption of messages. Note that transition γ in
Fig. 6(d) has an empty pre-set and δ has an empty post-set. Figure 6(e) shows
the net I : 1 → 1 that contains no places. The sole transition β has empty pre
and post-sets. This net can forward any quantity of tokens received on its left
port to the right port and, hence, it is neither bisimilar to Rq nor to S∅.

While from the point of view of ordinary Petri nets having empty pre-/post-
sets is quite a peculiar feature, which makes life harder when defining the op-
erational semantics, we emphasize that in our context of decomposing nets into
their minimal components this is a highly valuable property. In fact, the in-
terfaces of nets with boundaries have the role of synchronizing the transitions

//
a

α
2 //•

3

��
M γ //

c

2 //
b

β //•

??

N

(a) Two P/T with boundaries M and N .

3 ++

a

3α2β; 2γ
2 //

c

4

33b

(b) Composition M ;N .

Fig. 7. Composition of P/T with boundaries

of different components. In this perspective, it is natural to have nets without
places as basic components.

Nets with boundaries can be composed in parallel and in series.
Given NX : m→ n and MY : k → l, their tensor product is the net NX⊗MY :

m+ k → n+ l whose sets of places and transitions are the disjoint union of the
corresponding sets inN andM , whose maps ◦−,−◦, •−,−• are defined according
to the maps in N and M and whose initial marking is X ∪ Y. Intuitively, the
tensor product corresponds to put the nets N and M side-by-side.

The sequential composition NX ;MY : m→ n of NX : m→ k and MY : k →
n is slightly more involved. Intuitively, transitions attached to the left or right
boundaries can be seen as transition fragments, that can be completed by at-
taching other complementary fragments to that boundary. When two transition
fragments in N share a boundary node, then they are two mutually exclusive
options for completing a fragment of M attached to the same boundary node.
Thus, the idea is to combine the transitions of N with those of M when they
share a common boundary, as if their firings were synchronised. As in general
(infinitely) many combinations are possible, the composed nets is defined by se-
lecting a minimal (multi-)set of synchronisations that suffices to represent any
other possible synchronisation as a linear combinations of the chosen ones (i.e.,
as the concurrent firing of several transitions). The initial marking is X ∪ Y
(formal definition can be found at [12]). As an example, Fig. 7(b) shows the
sequential composition of the nets M : 0 → 2 and N : 2 → 0 from Fig. 7(a). A
firing of α produces two tokens on the port to which γ is also attached, while
a firing of γ requires three tokens from the same port and one from the other
port, to which β is attached to. Therefore the minimal multi-set of transitions
that allows the synchronization between α, β and γ contains three instances of
α and two instances of β and γ.

3.2 From P/T nets with boundaries to P/T calculus and back

The contribution in [12] enlightens a tight semantics correspondence between
P/T calculus and P/T nets with boundaries. Concretely, two translations are
defined. The first encoding T shows that each net NX can be mapped into a P/T

calculus process TNX that preserves and reflects operational semantics (and thus
also bisimilarity). The second encoding {[−]} provides the converse translation,
from a P/T Petri calculus process P to a P/T net with boundaries {[P]}, defined
by structural induction. We recall here the two main correspondence results and
omit the details due to space constraints.

Theorem 1. Let P be a term of P/T calculus.

(i) if P
a−→
b P ′ then {[P]} a−→

b {[P ′]}.
(ii) if {[P]} a−→

b NX then ∃P ′ such that P
a−→
b P ′ and {[P ′]} = NX .

Theorem 2. Let N be a finite P/T net with boundaries, then

(i) if NX
a−→
b
NY then TNX

a−→
b

TNY .

(ii) if TNX
a−→
b
Q then ∃Y such that NX

a−→
b
NY and Q = TNY .

3.3 C/E nets with boundaries

A well-known subclass of bounded P/T nets are C/E nets. In C/E nets, places
have maximum capacity 1 and pre- and post-set of transitions are restricted to
sets (instead of multisets). Fomally,

Definition 5 (C/E net). A C/E net is a P/T net N = (P, T, ◦−, −◦) where:5

P is a set of places; T is a set of transitions; and ◦−,−◦ : T → 2P are functions.

In addition, a C/E marking is just a subset of places X ⊆ P (not a multiset).
We let NX denote the net N with marking X.

Definition 6 (C/E step semantics). Let N = (P, T, ◦−, −◦) be a C/E net,
X,Y ⊆ P and U ⊆MT a multiset of transitions s.t. ◦U and U◦ are sets, write:

NX →U NY
def
= ◦U ⊆ X, U◦ ∩X = ∅ & Y = (X\◦U) ∪ U◦.

We remark that the constraint on ◦U and U◦ to be sets ensures that every
pair of transitions in U has disjoint pre- and post-sets. This definition allows the
concurrent firing of several instances of the same transition when its pre- and
post-sets are both empty: As explained before, even if places are bounded this
will allow for ports of unbounded capacity (w.r.t. the number of actions that can
take place concurrently) in C/E nets with boundaries.

Definition 7 (C/E nets with boundaries). A P/T net with boundaries N =
(P, T, ◦−, −◦, •−, −•) is a C/E net with boundaries if (P, T, ◦−, −◦) is a C/E
net.

A marking of a C/E net with boundaries is just a set of places of the net,
i.e., X ⊆ P . Note that while pre- and post-set of transitions are sets and not
multisets, multiplicity are maintained by •− and −• w.r.t. left and right ports:
many tokens can be exchanged concurrently over a single port in one step.

5 In the context of C/E nets some authors call places conditions and transitions events.

Definition 8 (C/E Labelled Semantics). Let N = (P, T, ◦−, −◦, •−, −•)
be a C/E net with boundaries and X,Y ⊆ P . Write:

NX
a−→
b NY

def
= ∃U ⊆ MT s.t. NX →U NY , a = p•Uq & b = pU•q (2)

Remark 2. Following the presentation of the C/E Petri Calculus in Section 2.2
(see Remark 1), we have presented here a slightly different definition for C/E
Petri nets with boundaries w.r.t. [12] by allowing richer observations over inter-
faces (strings of natural numbers instead of just 0/1).

Example 4. All nets in Fig. 6 except from Q2pq (Fig. 6(b)) can be interpreted
as C/E nets with boundaries. We remark that Pp has the same behaviour when
considering both the P/T net and the C/E labelled semantics (because Pp is a
1-bounded P/T net). Similarly, the semantics of I∅ is also invariant under both
views. Differently, the behaviour of Rq and S∅ changes when considering the
C/E semantics. The former is deadlocked, because of the self-looping transitions,
while the latter models a buffers of capacity one that alternates the production
and consumption of tokens.

The correspondence results in Section 3.2 can be restated also for the case of
the Petri Calculus and C/E nets with boundaries along the lines shown in [12].

4 Normal forms for finite state P/T terms

This section shows how to obtain normal forms for finite state connectors. We
will take advantage of the mutual encodings between P/T calculus terms and
P/T nets with boundaries summarised in Section 3.2. In order to obtain the nor-
mal for a connector, we will proceed as follows: (i) we translate a P/T calculus
term into an equivalent P/T net with boundaries by using the encoding {[]}, (ii)
we compute a canonical representation (up to isomorphism) for the correspond-
ing net with boundaries, (iii) we map back the canonical representation of the
net into a term of the P/T calculus by using the encoding T . The canonical
representation of the net is obtained by analysing its associated marking graph.

Definition 9 (Reachable marking). Let NX : n → m be a P/T net with
boundaries. Then, Y is a reachable marking of NX if there exists a (possible

empty) finite sequence of transitions NX
a1−−→
b1

NX1

a2−−→
b2

. . .
ak−−→
bk

NY with ai ∈ Nn
and bi ∈ Nm. We write RM(NX) for the set of all reachable markings of NX .

Definition 10 (Marking graph of a net with boundaries). Let N : n→ m
be a P/T net with boundaries with initial marking X . The marking graph of NX
is the state transition graph MG(NX) = (RM(NX),T) where T ⊆MP × Nn ×
Nm ×MP is as follows: T = {(Y, a, b,Z) | Y,Z ∈ RM(NX) ∧NY

a−→
b NZ}.

We say MG(NX) is (in)finite state when RM(NX) is (in)finite. We say
MG(NX) is finite when it is finite state and T is also finite, we say it is infinite
otherwise.

p

1,0 ��

0,0gg

q

1,0 ��

0,0gg

0,1

UU

r 0,0gg

0,1

UU

(a) MG(Pp).

2pq

1,0 ��

0,0
nn

pqr

1,0 ��

0,0
nn

0,1

TT

2qr 0,0
mm

0,1

UU

(b) MG(Q2pq).

q

1,0 ��

0,0gg

qr

1,0 ��

0,0
jj

0,1

UU

q2r

1,0

��

0,0
mm

0,1

UU

. . .

0,1
SS

(c) MG(Rq).

∅

0,0

��

1,0

zz

2,0

��

3,0

++r

0,0

LL

1,1

WW

0,1

::

1,0

22

2,1

77

2,0

::2r

0,0

KK

1,1

VV
2,2

ii
0,1

rr

0,2

TT

1,0

22 . . .
1,0

rr

(d) MG(S∅).

∅

0,0

tt 1,1
ii

k,k

44

...

(e) MG(I).

Fig. 8. Marking graphs

MG(NX) is finitely branching if for any Y ∈ RM(NX) it holds that TY =
{(V, a, b,Z) | (V, a, b,Z) ∈ T ∧ V = Y} is finite.

Note that for any NX : n → m, it holds that NX
0n−−→
0m NX . Therefore, every

node in a marking graph of the net has a self-loop with label (0n, 0m).

Example 5. Figure 8 shows the marking graphs for the nets in Fig. 6. We remark
that the marking graphs for Pp and Q2pq are finite and isomorphic. On the
contrary, the remaining three are infinite. The marking graph for Rq and S∅
are infinite state (because the corresponding nets are unbounded). Nevertheless,
whileMG(Rq) is finitely branching,MG(S∅) is not (e.g., any state inMG(S∅)
has a transition labelled (k, 0) for any k ∈ N). Although MG(I) is finite state,
it is infinitely branching.

Remark 3. The marking graph of a net with boundaries is finite state only if the
underlying net is bounded. Note that the marking graph of a net containing a
transition with empty pre-set and non-empty post-set is unbounded (for instance,
the net S∅ in Fig. 8(d)).

Remark 4. The marking graph of a P/T net with boundaries containing a tran-
sition with an empty preset is infinitely branching (e.g., the nets I∅ in Fig. 6(e)
and S∅ in Fig. 8(d)). On the contrary, when every transitions in the net has a

non-empty preset, the marking graph is finitely branching because each marking
constraints the number of concurrently fireable instances of each transition.

The remaining of the section is devoted to the definition of the normal form
of (finite state) connectors. We deal with the general case by using a divide et
impera approach. We solve two sub-problems first: (i) the encoding of nets with
finite marking graphs (Section 4.1) and (ii) the encoding of infinitely branching
stateless nets (Section 4.2).

4.1 Finite (state and transition) marking graphs

In this section we show how to obtain the normal form for P/T nets with bound-
aries whose marking graph is finite, i.e., when it is bounded and every transition
has a non-empty preset. We leave this as an implicit assumption for all the nets
considered in this section.

We first note that for a finite graph we can apply, e.g., a partition refine-
ment algorithm [18,24] to obtain the smallest (up-to iso) (in terms of states and
transitions) automaton amongst all those bisimilar to the given graph. We write
min(MG) for the minimal graph in the equivalence class of MG.

We note that any finite marking graph can be represented by a P/T net with
boundaries as follows:

Definition 11 (Marking graph as a net with boundaries). Let MG =
(S, T) with T ∈ S × Nn × Nm × S be a marking graph. The corresponding P/T
net with boundaries is NB(MG) = (S, T ′, ◦−,−◦, •−,−•) : n→ m s.t.

− T ′ = T r {(s, 0n, 0m, s) | s ∈ S} (we can safely omit self-looping transitions
that are not attached to ports);

− ◦(s, a, b, t) = s and (s, a, b, t)◦ = t;
− •(s, a, b, t) = U where U ∈ Mn and pUq = a;
− (s, a, b, t)• = V where V ∈ Mm and pVq = b.

We let can(NX)
def
= NB(min(MG(NX))){X}.

Lemma 1 (Minimal net with boundaries). Let N : n → m be a net with
boundaries, then we have that NX and can(NX) are bisimilar.

Proof. It follows by noting that NX andMG(NX) are bisimilar by construction;
MG(NX) and min(MG(NX)) are bisimilar by definition; and min(MG(NX))
and NB(min(MG(NX))){X} are bisimilar by construction.

Corollary 1. can(N) is unique (up-to iso) because NB(−) and MG(−) are
functions and the minimal automaton is also unique (up-to iso).

Corollary 2. Given two bisimilar nets with boundaries NX and MX , the nets
can(NX) and can(MX) are isomorphic.

Example 6. Consider the P/T term Q = (∇⊗(>;∇)); (I⊗T⊗I); ((

∇

;⊥)⊗

∇

) with
T = X; (∇⊗∇); (L2M⊗ (∨; L1M;∧)⊗ L0M); (

∇

⊗

∇

) depicted in Fig. 9(a). The equiv-
alent P/T net with boundaries {[Q]} is the net Q2pq shown in Fig. 6(b). The cor-
responding marking graphs is in Fig. 8(b). This graph is minimal, i.e., there does
not exist a bisimilar graph with a smaller number of states and/or transitions.
Therefore, min(MG(Q2pq)) =MG(Q2pq) and can(Q2pr) = NB(MG(Q2pr))2pr,
which is shown in Fig. 9(b). Then, the normal form nf (Q) is obtained by encod-
ing back can(Q2pr) as a P/T term (shown in Fig. 9(c)).

We remark that the marking graph MG(Pp)) (Fig. 8(a)), corresponding to
Pp in Fig. 6(a), is isomorphic to the marking graph of Q2pq. This implies that
both Pp and Q2pq have the same normal form.

4.2 Stateless, infinitely branching marking graphs

The simplest case of finite state, but infinite branching marking graph, is a net
without places, like the net I in Fig. 6(e), whose marking graph is (partially)
depicted in Fig. 8(e).

We introduce a minimization procedure for stateless nets that removes re-
dundant transitions, i.e., transitions that can be mimicked by a combination of
other transitions in the net.

Definition 12 (Redundant transition and minimal net). Let N : m→ n
be the stateless P/T net with boundaries N = (∅, T, ◦−,−◦, •−,−•). A transition
t ∈ T is redundant if there exists U ∈ MT−{t} s.t. •t = •U and t• = U•. We say
that a stateless net is minimal if every transition is not redundant.

Lemma 2. Let N : m → n be the stateless P/T net with boundaries N =
(∅, T, ◦−,−◦, •−,−•) with t ∈ T redundant. Define T ′ = T − {t} and

N ′ = (∅, T ′, ◦−|T ′ ,−◦|T ′ , • − |T ′ ,−•|T ′).

Then, N∅ and N ′∅ are bisimilar.

The above result provides a minimization procedure by iteratively removing
redundant transitions. The procedure is effective: it takes each transition t ∈ T
and compares pre- and post-sets with each possible multisets U of T . Since •t
and t• are finite, there is just a finite number of multisets U of T to consider.
We note Ñ the result of the minimization algorithm over N .

The above procedure converges in a finite number of steps, because T is finite.
The procedure is non-deterministic (w.r.t. the choice of the redundant transition
t to eliminate) but it always converges to the same result.

Lemma 3. Let N be a stateless net with boundaries, then Ñ is uniquely defined
(up-to iso).

Proof. We proceed by contradiction. Suppose that different orders in which re-
dundant transitions are eliminated can lead to two different outcomes

N ′ = (∅, T ′, ◦−,−◦, •−,−•) and N ′′ = (∅, T ′′, ◦−,−◦, •−,−•).

◦ 2
�

+ 1 +

�
0 ◦

(a) Q

•
zz

2pq

(2pq, 1, 0, pqr)

..

(pqr, 0, 1, 2pq)

nn

��•
&&

88

zz

::pqr

•

(pqr, 1, 0, 2qr)

..

(2qr, 0, 1, pqr)

nn @@

::2qr

(b) can(Q2pq)

� �

� �

�
1

�

�
0+

+

�

�

◦
+

0
�

�

� ◦+

(c) nf (Q)

Fig. 9. Normal form of a term with finite marking graph

Clearly it cannot be the case that T ′ ⊂ T ′′ or T ′′ ⊂ T ′ (otherwise T ′ or T ′′

would contain redundant transitions). Hence T ′′ r T ′ 6= ∅ and T ′ r T ′′ 6= ∅.
Let t′ ∈ T ′rT ′′. Since t′ ∈ T ′ ⊆ T , it must be redundant w.r.t. the transitions

in T ′′, i.e., there must exist U ′ ∈ MT ′′ s.t. •t′ = •U ′ and t′• = U ′•. Following
a similar reasoning, any transition t′′ in T ′′ r T ′ must be redundant w.r.t. the
transitions in T ′ and expressible as a suitable U ′′ ∈MT ′ .

Moreover, there must be at least one transition t′′ ∈ U ′, non isomorphic to
t′, such that t′′ ∈ T ′′ r T ′ (otherwise t′ would be redundant w.r.t. transitions in
T ′). Then, since any such t′′ can be expressed in terms of U ′′ ∈ MT ′ , it follows
that t′ can be expressed as a multiset U ∈ MT ′ . Now there are two cases:

− t′ 6∈ U , but this is absurd, because t′ would be redundant;
− t′ ∈ U , but this is absurd, because we would have U = t′ isomorphic to t′′.

Lemma 4. Let N be a stateless net, then Ñ∅ and N∅ are bisimilar.

Lemma 5. Let N and M be two stateless bisimilar nets, then Ñ∅ = M̃∅ (up-to
iso).

Proof. The proof follows by contradiction. Assume that there is a transition t in
Ñ that is not matched by a transition in M̃ . Let Ñ∅ →t Ñ∅. Then, N∅ →t N∅.
Since N∅ and M∅ are bisimilar, M∅ →U M∅ with •t = •U and t• = U•.
Consequently, M∅ →U M∅. If |U| = 1, we are done. Otherwise, U = k1 · t1 ∪
. . .∪kn · tn with n > 1. Then, for any transition ti we conclude that Ñ∅ →ti Ñ∅.
Hence, t is redundant in Ñ , which contradicts the assumption that Ñ is minimal.

Example 7. Consider the stateless term Sl = (∧ ⊗ ∧); (I ⊗ (

∇
;∇) ⊗ I); (∨ ⊗ ∨)

depicted in Fig. 10(a). The corresponding net with boundaries {[Sl]} is shown in
Fig. 10(b). Note that the transition β is redundant because it can be expressed as
the concurrent firing of α and β; consequently, it is removed by the minimization

algorithm, which produces the minimal net {̃[Sl]} shown in Fig. 10(c). Finally,

the normal form nf (Sl) for the net Sl is obtained by encoding back {̃[Sl]} as the
Petri calculus term shown in Fig. 10(d).

4.3 Finite state and infinitely branching marking graph

When the the marking graph is finite state but infinitely branching, the associ-
ated net has both transitions with empty pre- and post-set and transitions with
non-empty post-set (by Remark 3, the net cannot contain transitions with empty
pre-set and non-empty post-set). We show first that the behaviour of a net can
be described by combining the behaviour of two subnets containing respectively
the stateless and stateful behaviours.

Definition 13 (Stateless and Stateful subnets). Let N : m→ n be the P/T
net with boundaries N = (P, T, ◦−,−◦, •−,−•). A transition t ∈ T is stateless if
◦t = t◦ = ∅. We write T sl for the set of all stateless transitions and T sf = T\T sl

denote the set of of stateful transitions. The the stateless subnet of N is

N sl = (∅, T sl, ◦ − |T sl ,−◦|T sl , • − |T sl ,−•|T sl)

◦
+

◦
+

◦ + ◦+

(a) Sl

• //

%%

α //•

β

99

%%• //

99

γ //•
(b) {[Sl]}

• // α //•

• // γ //•

(c) {̃[Sl]}

� �

� � � �

◦ � � ◦

◦ ◦
(d) nf (Sl)

Fig. 10. A stateless term of the P/T calculus Sl

Similarly, the stateful subnet is

N sf = (P, T sf , ◦ − |T sf ,−◦|T sf , • − |T sf ,−•|T sf)

We can now tightly relate the behaviour of N with those of N sl and N sf .

Lemma 6. Let NX be a marked P/T net with boundaries. Then,

− If NX
a−→
b NY , then there exist a1, a2, b1 and b2 such that a = a1 + a2,

b = b1 + b2, N sf
X

a1−−→
b1

N sf
Y and N sl

∅
a2−−→
b2

N sl
∅.

− If N sf
X

a1−−→
b1

N sf
Y and N sl

∅
a2−−→
b2

N sl
∅, then NX

a1+a2−−−−→
b1+b2

NY .

Proof. The proof follows by definition of the subnets and the operational seman-
tics of P/T nets, as transitions of N are just partitioned into N sl and N sf .

In the following we let In
def
=

⊗
n I : (n, n) and define the following terms of

the P/T calculus, ∀n ∈ N:

X0
def
= I : (1, 1) Λ0 = V0

def
= ↑; ↓: (0, 0)

X1
def
= X : (2, 2) Xn+1

def
= (Xn ⊗ I) ; (In ⊗ X) : (n+ 2, n+ 2)

Λ1
def
= Λ : (1, 2) Λn+1

def
= (Λ⊗ Λn) ; (I⊗ Xn ⊗ In) : (n+ 1, 2n+ 2)

V1
def
= V : (2, 1) Vn+1

def
= (V ⊗ Vn) ; (I⊗ Xn ⊗ In) : (2n+ 2, n+ 1)

It can be proved by induction that the only transitions for Λn and Vn are

Λn
a−→
b

Λn and Vn
b−→
a

Vn with |a| = n, |b| = 2n, and ai = bi + bn+i for all i < n.

Definition 14. Let P be a P/T calculus term s.t. {[P]} : m→ n andMG({[P]})
is finite state. The normal form of P , written nf (P), is as follows

nf (P) = Λm; (T can({[P]}sf) ⊗ T
{̃[P]}sl

); Vn

Lemma 7. Let P be a P/T calculus term s.t. MG({[P]}) is finite state. Then,
P and nf (P) are bisimilar.

Proof. It follows from the behaviour of Λn and Vn, Lemmata 1, 4 and 6 and the
correspondence theorems 1 and 2.

Lemma 8. Let P and Q be two bisimilar P/T calculus terms s.t. MG({[P]})
and MG({[Q]}) are finite state. Then, nf (P) = nf (Q) (up-to iso).

Proof. It follows by contradiction. Assume that min({[P]}sf) = min({[Q]}sf) and

{̃[P]}sl = {̃[Q]}sl does not hold. Therefore, it should be the case that either i)

min({[P]}sf) and min({[Q]}sf) are not bisimilar; or ii) {̃[P]}sl = {̃[Q]}sl are not
bisimilar. In both cases we conclude that min({[P]}) and min({[Q]}) (and there-
fore P and Q) are not bisimilar. For i), we note that the marking graphs differ
in a transition connecting two different states (and this cannot be mimicked by
stateless transitions); for ii) every state will miss at least a self-loop transition
(since MG({[P]}) and MG({[Q]}) are finite state, all infinite self-loops in the
marking graphs are originated by stateless transitions).

Corollary 3 (Idempotency). nf (P) = nf (nf (P)) (up-to iso).

5 Normal forms for the C/E Petri Calculus

The case of C/E Petri calculus is quite interesting, because now any term P
models a finite state connector, so that we can reduce to normal form any term.

Lemma 9. Let P be a Petri calculus term. Then MG({[P]}) is finite state.

Proof. The C/E net with boundariesMG(P) has as many places as the number
of subterms © and ©· in P and the reachable states of MG(P) are just subsets
of the places in MG(P), thus they are finitely many.

Now by using the approach for P/T nets we can obtain the normal form for
every Petri calculus term. The only subtlety to deal with is when mapping a
marking graph into a C/E net, because marking graphs can contain self-loops,
as illustrated by the following example.

Example 8. Consider the C/E net Cp in Fig. 11(a). The corresponding marking
graph is in Fig. 11(b) and the corresponding minimal automaton is in Fig. 11(c).
If we apply NB we obtain the net in Fig. 11(d). Note that transition α cannot be
fired under the C/E semantics because it inhibits consume/produce loops. Hence,
the obtained net is not bisimilar to Cp. In order to translate back the minimal

α1

''--•

//

//

•

>>
p

~~

q

•

α2

77mm

(a) Cp.

p

1,1 ��

0,0gg

q 0,0gg

1,1

UU

(b) MG(Cp).

p 0,0gg

1,1

33

(c) min(MG(Cp)).

• // α //

��

•

•

VV
p

(d) NB(min(MG(Cp))).

p

1,1 ��

0,0gg

q

1,1

UU

0,0gg

(e) min(MG(Cp)).

Fig. 11. Minimisation of C/E nets

marking graph to a C/E net, we need to handle self-loops differently. While
NB already removes any trivial self-loop (i.e., with empty observation) from the
minimal marking graph, non-trivial self-loops are handled by duplicating states,
as illustrated in Fig. 11(e). Then, the normal form is obtained by using the C/E
corresponding to the minimal marking graph without non-trivial self-loops.

6 Concluding remarks

In this paper we have considered a calculus of connectors that allows for the
most general combination of synchronisation, non-determinism and buffering.
The touchstone of its generality is its ability of modeling a variety of Petri nets
compositionally, up to bisimilarity. Often bisimilarity implies the existence of a
minimal representative, but such a construction has not been exhibited yet for
Petri nets, at least directly. Thus in the paper we interpret the case graph of a
net as a transition system labelled with the synchronizations observable on its
boundaries. Then we can minimize such a LTS and reinterpret it univocally as a
net and as a term of the calculus. Thus minimality is restricted to a case graph
(step) semantics, which we might say observes parallelism but not concurrency.

Related work An algebra consisting of five kinds of basic stateless connectors
(plus their duals) is presented in [8], together with the operational, observational
and denotational semantics and a complete normal-form axiomatisation. The
behaviour of connectors ∧ and ∨ is slightly different from the one considered here,
because in [8] only one action can take place at the time, e.g., only transitions

∧ 1−→
10 ∧ and ∧ 1−→

01 ∧ are considered instead of ∧ n+m−−−−→
nm ∧.

The Tile Model [15] offers a semantic framework for concurrent systems, of
which the algebra of stateless connectors is just a particular instance. Roughly,

the semantics of component-based systems can be expressed via tiles when con-
figurations and observations form two monoidal categories with the same objects.
Tiles define LTSs whose labels are pairs 〈trigger, effect〉. In this context, the usual
notion of equivalence is called tile bisimilarity, which is a congruence (w.r.t. se-
quential and parallel composition) when a suitable rule format is met [15].

Reo [1] is an exogenous coordination model based on channel-like connec-
tors that mediate the flow of data among components. Notably, a small set of
point-to-point primitive connectors is sufficient to express a large variety of in-
teresting interaction patterns, including several forms of mutual exclusion, syn-
chronisation, alternation, and context-dependency. Components and primitive
connectors can be composed into larger Reo circuits by disjoint union up-to the
merging of shared nodes. The semantics of Reo has been formalised in many
ways, tile model included [2]. See [17] for a recent survey.

BIP [4] is a component framework for constructing systems by superposing
three layers of modelling: 1) Behaviour, representing the sequential computation
of individual components; 2) Interaction, defining the handshaking mechanisms
between these components; and 3) Priority, assigning a partial order of privileges
to interactions. In absence of priorities, the interaction layer admits the algebraic
presentation given in [5] and has been related to connectors in [10].

The wire calculus [27] takes inspiration from [19,20] but shares similarities
with the tile model. It is presented as a process algebra where each process comes
with a sort, written P : (n,m) for a process P with n ports on the left and m
on the right. The usual action prefixes a.P of process algebras are extended by
allowing the simultaneous input of a trigger a and output of an effect b, written
a
b .P , where a (resp. b) is a string of actions, one for each port of the process.
The Petri calculus [28,9] can be regarded as a dialect of the wire calculus.

Nets with boundaries [28] take inspiration from the open nets of [3], whose
interfaces consist of places instead of ports.

Future work Some recent work [6,7] exploits an algebra of connectors similar to
ours to define a relational denotational semantics and a structural operational
semantics for signal flow graphs, a classical structure in control theory and signal
processing. We plan to investigate connections between Petri nets with bound-
aries and signal flow graphs. We might also consider extending the results of
this paper to other more expressive semantics, observing e.g. causality. Another
direction in which our results could be extended is dealing with systems with a
higher degree of dynamism, that adapt their behavior to evolving environments:
e.g., systems whose structure and interaction capabilities can change at runtime.
Some recent progresses in this direction are discussed in [11].

Acknowledgements We thank the anonymous reviewers for their careful reading
and helpful suggestions for improving the presentation. We would like to express
infinite gratitude to José, for his guidance, support and friendship during our
long-standing collaboration.

References

1. Arbab, F.: Reo: a channel-based coordination model for component composition.
Math. Struct. in Comp. Sci. 14(3), 329–366 (2004)

2. Arbab, F., Bruni, R., Clarke, D., Lanese, I., Montanari, U.: Tiles for Reo. In:
WADT’08. LNCS, vol. 5486, pp. 37–55. Springer (2009)

3. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open
Petri nets based on deterministic processes. Math. Struct. in Comp. Sci. 15(1),
1–35 (2005)

4. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM’06. pp. 3–12. IEEE Computer Society (2006)

5. Bliudze, S., Sifakis, J.: The algebra of connectors - structuring interaction in BIP.
IEEE Trans. Computers 57(10), 1315–1330 (2008)

6. Bonchi, F., Sobocinski, P., Zanasi, F.: A categorical semantics of signal flow graphs.
In: CONCUR’14. LNCS, vol. 8704, pp. 435–450. Springer (2014)

7. Bonchi, F., Sobocinski, P., Zanasi, F.: Full abstraction for signal flow graphs. In:
POPL’15. pp. 515–526. ACM (2015)

8. Bruni, R., Lanese, I., Montanari, U.: A basic algebra of stateless connectors. Theor.
Comput. Sci. 366(1-2), 98–120 (2006)

9. Bruni, R., Melgratti, H.C., Montanari, U.: A connector algebra for P/T nets in-
teractions. In: CONCUR’11. LNCS, vol. 6901, pp. 312–326. Springer (2011)

10. Bruni, R., Melgratti, H.C., Montanari, U.: Connector algebras, Petri nets, and
BIP. In: PSI 2011. LNCS, vol. 7162, pp. 19–38. Springer (2012)

11. Bruni, R., Melgratti, H.C., Montanari, U.: Behaviour, interaction and dynamics.
In: SAS’15. LNCS, vol. 8373, pp. 382–401. Springer (2014)

12. Bruni, R., Melgratti, H.C., Montanari, U., Sobocinski, P.: Connector algebras for
C/E and P/T nets’ interactions. Logical Methods in Computer Science 9(3) (2013)

13. Bruni, R., Meseguer, J., Montanari, U., Sassone, V.: Functorial models for Petri
nets. Inf. Comput. 170(2), 207–236 (2001)

14. Degano, P., Meseguer, J., Montanari, U.: Axiomatizing the algebra of net compu-
tations and processes. Acta Inf. 33(7), 641–667 (1996)

15. Gadducci, F., Montanari, U.: The tile model. In: Proof, Language, and Interaction.
pp. 133–166. The MIT Press (2000)

16. Hackney, P., Robertson, M.: On the category of props (2012), arXiv:1207.2773
17. Jongmans, S.S.T., Arbab, F.: Overview of thirty semantic formalisms for Reo.

Scientific Annals of Computer Science 22(1), 201–251 (2012)
18. Kanellakis, P.C., Smolka, S.A.: CCS expressions, finite state processes, and three

problems of equivalence. In: PODC’83. pp. 228–240. ACM (1983)
19. Katis, P., Sabadini, N., Walters, R.F.C.: Representing place/transition nets in

Span(Graph). In: AMAST’97. LNCS, vol. 1349, pp. 322–336. Springer (1997)
20. Katis, P., Sabadini, N., Walters, R.F.C.: Span(graph): A categorial algebra of tran-

sition systems. In: AMAST’97. LNCS, vol. 1349, pp. 307–321. Springer (1997)
21. MacLane, S.: Categorical algebra. Bulletin of the AMS 71(1), 40–106 (1965)
22. Meseguer, J., Montanari, U.: Petri nets are monoids. Inf. Comp. 88(2), 105–155

(1990)
23. Meseguer, J., Montanari, U., Sassone, V.: On the semantics of place/transition

Petri nets. Math. Struct. in Comp. Sci. 7(4), 359–397 (1997)
24. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput.

16(6), 973–989 (1987)

25. Perry, D.E., Wolf, E.L.: Foundations for the study of software architecture. ACM
SIGSOFT Software Engineering Notes 17, 40–52 (1992)

26. Petri, C.: Kommunikation mit Automaten. Ph.D. thesis, Institut für Instrumentelle
Mathematik, Bonn (1962)

27. Sobocinski, P.: A non-interleaving process calculus for multi-party synchronisation.
In: ICE’09. EPTCS, vol. 12, pp. 87–98 (2009)

28. Sobocinski, P.: Representations of Petri net interactions. In: CONCUR’10. LNCS,
vol. 6269, pp. 554–568. Springer (2010)

	A normal form for stateful connectors

