Skip to main content

Ground Truth Correspondence Between Nodes to Learn Graph-Matching Edit-Costs

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9256))

Included in the following conference series:

  • 3075 Accesses

Abstract

The Graph Edit Distance is the most used distance between Attributed Graphs and it is composed of three main costs on nodes and arcs: Insertion, Deletion and Substitution. We present a method to learn the Insertion and Deletion costs of nodes and edges defined in the Graph Edit Distance, whereas, we define the Edit Cost Substitution data dependent and without parameters (for instance the Euclidean distance). In some applications, the ground truth of the correspondence between some pairs of graphs is available or can be easily deducted. The aim of the method we present is the learning process depends on these few available ground truth correspondences and not to the classification set that in some applications is not available. To learn these costs, the optimisation algorithm tends to minimise the Hamming distance between the ground truth correspondences and the automatically extracted node correspondences. We believe that minimising the Hamming distance makes the matching algorithm to find a good correspondence and so, to increase the recognition ratio of the classification algorithm in a pattern recognition application.

This research is supported by Spanish projects DPI2013-42458-P & TIN2013-47245-C2-2-R.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jouili, S., Tabbone, S.: Hypergraph-based image retrieval for graph-based representation. Pattern Recognition 45(11), 4054–4068 (2012)

    Article  Google Scholar 

  2. Neuhaus, M., Bunke, H.: A graph matching based approach to fingerprint classification using directional variance. In: Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 191–200. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Serratosa, F., Cortés, X., Solé-Ribalta, A.: Component retrieval based on a database of graphs for Hand-Written Electronic-Scheme Digitalisation. Expert Syst. Appl. 40(7), 2493–2502 (2013)

    Article  Google Scholar 

  4. Mahé, P., Vert, J.-P.: Graph kernels based on tree patterns for molecules. Machine Learning 75(1), 3–35 (2009)

    Article  Google Scholar 

  5. Fan, W.: Graph pattern matching revised for social network analysis. In: ICDT 2012, pp. 8–21

    Google Scholar 

  6. Qi, X., Wu, Q., Zhang, Y., Fuller, E., Zhang, C.-Q.: A novel model for DNA sequence similarity analysis based on graph theory. Evolutionary Bioinformatics 7, 149–154 (2011)

    Google Scholar 

  7. Sanfeliu, A., Fu, K.S.: A Distance measure between attributed relational graphs for pattern recognition. IEEE Trans. on Systems, Man, and Cybernetics 13(3), 353–362 (1983)

    Article  MATH  Google Scholar 

  8. Gao, X., et al.: A survey of graph edit distance. Pattern Analysis and Applications 13(1), 113–129 (2010)

    Article  MathSciNet  Google Scholar 

  9. Bunke, H., Allermann, G.: Inexact graph matching for structural pattern recognition. Pattern Recognition Letters 1(4), 245–253 (1983)

    Article  MATH  Google Scholar 

  10. Solé, A., Serratosa, F., Sanfeliu, A.: On the Graph Edit Distance cost: Properties and Applications. Intern. Journal Pattern Recognition & Artificial Intelligence 26(5) (2012)

    Google Scholar 

  11. Neuhaus, M., Bunke, H.: Self-organizing maps for learning the edit costs in graph matching. IEEE Trans. on Sys., Man, and Cybernetics, Part B 35(3), 503–514 (2005)

    Article  Google Scholar 

  12. Neuhaus, M., Bunke, H.: Automatic learning of cost functions for graph edit distance. Information Sciences 177(1), 239–247 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Leordeanu, M., Sukthankar, R., Hebert, M.: Unsupervised Learning for Graph Matching. International Journal of Computer Vision 96(1), 28–45 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Caetano, T., et al.: Learning Graph Matching. Transaction on Pattern Analysis and Machine Intelligence 31(6), 1048–1058 (2009)

    Article  Google Scholar 

  15. Serratosa, F., Solé-Ribalta, A., Cortés, X.: Automatic learning of edit costs based on interactive and adaptive graph recognition. In: Jiang, X., Ferrer, M., Torsello, A. (eds.) GbRPR 2011. LNCS, vol. 6658, pp. 152–163. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Moreno, C., Serratosa, F.: Consensus of Two Sets of Correspondences through Optimisation Functions, Pattern Analysis and Applications (2015)

    Google Scholar 

  17. Mohri, M., Rostamizadeh, A., Talwalkar, A.: Foundations of Machine Learning. The MIT Press (2012). ISBN: 9780262018258

    Google Scholar 

  18. Cortés, X., Serratosa, F.: Learning Graph-Matching Edit-Costs based on the Optimality of the Oracle’s Node Correspondences. Pattern Recognition Letters 56, 22–29 (2015)

    Article  Google Scholar 

  19. Lladós, J., Martí, E., Villanueva, J.J.: Symbol Recognition by Error-Tolerant Subgraph Matching between Region Adjacency Graphs. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1137–1143 (2001)

    Article  Google Scholar 

  20. Gold, S., Rangarajan, A.: A Graduated Assignment Algorithm for Graph Matching. IEEE TPAMI 18(4), 377–388 (1996)

    Article  Google Scholar 

  21. Riesen, K., Bunke, H.: Approximate graph edit distance computation by means of bipartite graph matching. Image Vision Computing 27(7), 950–959 (2009)

    Article  Google Scholar 

  22. Serratosa, F.: Fast Computation of Bipartite Graph Matching. Pattern Recognition Letters 45, 244–250 (2014)

    Article  Google Scholar 

  23. Serratosa, F.: Speeding up Fast Bipartite Graph Matching trough a new cost matrix. International Journal of Pattern Recognition and Artificial Intelligence 29(2) (2015)

    Google Scholar 

  24. Cortés, X., Moreno, C., Serratosa, F.: Improving the correspondence establishment based on interactive homography estimation. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part II. LNCS, vol. 8048, pp. 457–465. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  25. Serratosa, F., Cortés, X.: Interactive Graph-Matching using Active Query Strategies. Pattern Recognition 48, 1360–1369 (2015)

    Article  Google Scholar 

  26. Cortés, X., Serratosa, F.: An Interactive Method for the Image Alignment problem based on Partially Supervised Correspondence. Expert Systems with Applications 42(1), 179–192 (2015)

    Article  Google Scholar 

  27. http://www.featurespace.org

  28. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. Comp. Vision and Image Unders. 110(3), 346–359 (2008)

    Article  Google Scholar 

  29. Delaunay, B.: Sur la sphère vide. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk 7, 793–800 (1934)

    Google Scholar 

  30. Nelder, J.A., Mead, R.: Computer Journal 7, 308–313 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesc Serratosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cortés, X., Serratosa, F., Moreno-García, C.F. (2015). Ground Truth Correspondence Between Nodes to Learn Graph-Matching Edit-Costs. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23192-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23191-4

  • Online ISBN: 978-3-319-23192-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics