Abstract
We present an algorithm for the scale-space clustering of a point cloud on a hypersphere in a higher-imensional Euclidean space. Our method achieves clustering by estimating the density distribution of the points in the linear scale space on the sphere. The algorithm regards the union of observed point sets as an image defined by the delta functions located at the positions of the points on the sphere. As numerical examples, we illustrate clustering on the 3-sphere \(\mathbb {S}^3\) in four-dimensional Euclidean space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Iijima, T.: Pattern Recognition. Corona, Tokyo (1976). (in Japanese)
Witkin, A.P.: Scale space filtering. In: Proc. 8th IJCAI, pp. 1019–1022 (1983)
Griffin, L.D., Colchester, A.: Superficial and deep structure in linear diffusion scale space: Isophotes, critical points and separatrices. Image and Vision Computing 13, 543–557 (1995)
Nakamura, E., Kehtarnavaz, N.: Determining number of clusters and prototype locations via multi-scale clustering. Pattern Recognition Letters 19, 1265–1283 (1998)
Leung, Y., Zhang, J.-S., Xu, Z.-B.: Clustering by scale-space filtering. IEEE Trans. PAMI 22, 1396–1410 (2000)
Loog, M., Duistermaat, J.J., Florack, L.M.J.: On the behavior of spatial critical points under gaussian blurring (a folklore theorem and scale-space constraints). In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 183–192. Springer, Heidelberg (2001)
Sakai, T., Imiya, A.: Unsupervised cluster discovery using statistics in scale space. Engineering Applications of Artificial Intelligence 22, 92–100 (2009)
Zhao, N.-Y., Iijima, T.: A theory of feature extraction by the tree of stable view-points. IEICE Japan, Trans. D J68–D, 1125–1135 (1985). (in Japanese)
Chung, M.K.: Heat kernel smoothing on unit sphere. In: Proc. 3rd IEEE ISBI: Nano to Macro, pp. 992–995 (2006)
Mochizuki, Y., Imiya, A., Kawamoto, K., Sakai, T., Torii, A.: Scale-space clustering on the sphere. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds.) CAIP 2013, Part I. LNCS, vol. 8047, pp. 417–424. Springer, Heidelberg (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Hirano, Y., Imiya, A. (2015). Scale-Space Clustering on a Unit Hypersphere. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-319-23192-1_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23191-4
Online ISBN: 978-3-319-23192-1
eBook Packages: Computer ScienceComputer Science (R0)