
25/04/2024 09:34

Shot and Scene Detection via Hierarchical Clustering for Re-using Broadcast Video / Baraldi, Lorenzo;
Grana, Costantino; Cucchiara, Rita. - STAMPA. - 9256:(2015), pp. 801-811. (Intervento presentato al
convegno 16th International Conference on Computer Analysis of Images and Patterns tenutosi a Valletta,
Malta nel 2-4 September 2015) [10.1007/978-3-319-23192-1_67].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Springer

This is the peer reviewd version of the followng article:

Shot and scene detection via hierarchical
clustering for re-using broadcast video

Lorenzo Baraldi, Costantino Grana, Rita Cucchiara

Dipartimento di Ingegneria “Enzo Ferrari”
Università degli Studi di Modena e Reggio Emilia

Via Vivarelli 10, Modena MO 41125, Italy
name.surname@unimore.it

Abstract. Video decomposition techniques are fundamental tools for
allowing effective video browsing and re-using. In this work, we con-
sider the problem of segmenting broadcast videos into coherent scenes,
and propose a scene detection algorithm based on hierarchical cluster-
ing, along with a very fast state-of-the-art shot segmentation approach.
Experiments are performed to demonstrate the effectiveness of our al-
gorithms, by comparing against recent proposals for automatic shot and
scene segmentation.

Keywords: shot detection, scene detection, clustering, performance mea-
sures.

1 Introduction

In recent years video content has become the major source of Internet traffic,
and the large availability of video has led to great interest in fields different
from simple entertainment or news broadcasting, such as education. This has
also caused a strong interest in the re-use of video content coming from major
broadcasting networks, which have been producing high quality edited videos
for popular science purposes, such as documentaries and similar programs.

Unfortunately, re-using videos is not an easy task, since it requires video
editing skills and tools, on top of the difficulty of finding the parts of videos which
effectively contain the specific content one is interested in. Indeed, accessing and
browsing a video in an effective way is still a problematic task, especially when
the length of the video makes the usage of common seek operations unfeasible
to get an insight of the video content.

There is a growing need for managing video content as pieces of text, allowing
significant parts to be easily identified, selected, copy and pasted, and so on. The
basic unit for this task cannot be the single frame, as a letter cannot be the basic
unit for copy and pasting meaningful content from text: higher level groupings
are needed, such as DVD chapters. The problem is that most of the on-line
reusable content is not provided with editor defined video sub units.

Scene detection has been recognized as a tool which effectively may help
in this context, going beyond simple editing units, such as shots. The task is

II

to identify coherent sequences of shots in videos, without any help from the
editor or publisher. Of course, a fundamental requirement for scene detection
is to accurately identify shot changes. Moreover, evaluating the performance of
automatic systems for scene detection is not an easy task: techniques previously
employed for different purposes are applied to newer problems, even if they do
not perfectly match with the objective at hand, but are easily understood from
previous experience. Often this approach leads to erroneous interpretations of
the experimental evaluations.

In this paper we present a complete pipeline for scene detection, that includes
a shot detection algorithm and a cluster based approach for grouping shots into
coherent scenes, and that shows superior results when compared to state-of-
the-art methods. We also try to tackle the problem of evaluating scene seg-
mentation results, by proposing an improved definition of the coverage/overflow
measures [8], which solves frequently observed cases in which the numeric inter-
pretation would be quite different from the expected results. We publicly release
the annotated dataset used for the evaluation as well as the source code of our
shot segmentation algorithm.

2 Related works

Video decomposition techniques aim to partition a video into sequences, like
shots or scenes. Shots are elementary structural segments that are defined as
sequences of images taken without interruption by a single camera. Scenes, on the
contrary, are often defined as series of temporally contiguous shots characterized
by overlapping links that connect shots with similar content [3].

Most of the existing shot detection techniques relies on the extraction of low
level features, like pixel-wise pixel comparisons or color histograms. Other tech-
niques exploit structural features of the frames, such as edges. After the intro-
duction of SVM classifiers, moreover, several approaches exploited them to clas-
sify candidate transitions [4]. Recently, algorithms that rely on local descriptors
(such as SIFT or SURF) were also proposed. One of the most recent approaches
to shot detection, presented in [1], is indeed based on local SURF descriptors
and HSV color histograms. Abrupt transitions are detected by thresholding a
distance measure between frames, while longer gradual transition are detected
by means of the derivative of the moving average of the aforesaid distance. A
GPU-based computing framework is also proposed to allow real-time analysis.
Their method, when run on a PC with an Intel i7 processor at 3.4 GHz and a
NVIDIA GPU, takes one third of the video duration to run.

On a different note, semantically coherent shots which are temporally close to
each other can be grouped together to create scenes. Existing works in this field
can be roughly categorized into three categories: rule-based methods, that con-
sider the way a scene is structured in professional movie production, graph-based
methods, where shots are arranged in a graph representation, and clustering-
based methods. They can rely on visual, audio, and textual features.

III

Rule-based approaches consider the way a scene is structured in professional
movie production. Of course, the drawback of this kind of methods is that they
tend to fail in videos where film-editing rules are not followed, or when two
adjacent scenes are similar and follow the same rules. Liu et al. [5], for exam-
ple, propose a visual based probabilistic framework that imitates the authoring
process and detects scenes by incorporating contextual dynamics and learning a
scene model. In [2], shots are represented by means of key-frames, thus, the first
step of this method is to extract several key-frames from each shot: frames from
a shot are clustered using the spectral clustering algorithm, color histograms
as features, and the euclidean distance to compute the similarity matrix. The
number of clusters is selected by applying a threshold Th on the eigenvalues of
the Normalized Laplacian. The distance between a pair of shots is defined as the
maximum similarity between key-frames belonging to the two shots, computed
using histogram intersection. Shots are clustered using again spectral clustering
and the aforesaid distance measure, and then labeled according to the clusters
they belong to. Scene boundaries are then detected from the alignment score of
the symbolic sequences.

In graph-based methods, instead, shots are arranged in a graph representa-
tion and then clustered by partitioning the graph. The Shot Transition Graph
(STG), proposed in [9], is one of the most used models in this category: here
each node represents a shot and the edges between the shots are weighted by
shot similarity. In [6], color and motion features are used to represent shot simi-
larity, and the STG is then split into subgraphs by applying the normalized cuts
for graph partitioning. More recently, Sidiropoulos et al. [7] introduced a new
STG approximation that exploits features automatically extracted from the vi-
sual and the auditory channel. This method extends the Shot Transition Graph
using multimodal low-level and high-level features. To this aim, multiple STGs
are constructed, one for each kind of feature, and then a probabilistic merging
process is used to combine their results. The used features include visual fea-
tures, such as HSV histograms, outputs of visual concept detectors trained using
the Bag of Words approach, and audio features, like background conditions clas-
sification results, speaker histogram, and model vectors constructed from the
responses of a number of audio event detectors.

3 Scene detection as a clustering problem

Since scenes are sets of contiguous shots, the first step in scene detection is to
identify shot boundaries. Therefore, we propose a shot segmentation approach
that assures high accuracy levels, while keeping execution times low. Our method
identifies shot boundaries by computing an extended difference measure, that
quantifies the change in the content of two different positions in the video, where
positions can be both frames and half-frames. We iteratively compare it against
experimentally specified thresholds and parameters that indicate the existence
of cuts and gradual transitions.

IV

Algorithm 1: Shot detection

T ← {};
/* Abrupt transition detection */

w ← 0.5;
C = {};
forall the n ≤ N do

if Mn
w > T then

insert (n, n) into C
end

end
Merge consecutive elements of C;
T ← {ti ∈ C : Peakw(ti) > TP }
/* Gradual transition detection */

for w ← 1 to W do
C = {};
forall the n ≤ N do

if Mn
w > T then

insert (n, n) into C
end

end
Merge consecutive elements of C;
foreach c ∈ {ti ∈ C : Peakw(ti) > TP } do

if distance between c and its nearest element in T ≤ TS then
insert c into T

end

end

end

3.1 Shot boundaries detection

Given two consecutive shots in a video sequence, the first one ending at frame
e, and the second one starting at frame s, we define the transition length as the
number of frames in which the transition is visible, that is L = s − e − 1. An
abrupt transition, therefore, is a transition with length L = 0. The transition
center is defined as n = (e + s)/2 and may correspond to a non-integer value,
that is an inter-frame position. This is always true in case of abrupt transitions.

Given a feature F (i) describing frame i, we define the extended difference
measure Mw

n , centered on frame or half-frame n, with 2n ∈ N, and with a frame-
step 2w ∈ N, as

Mn
w =

{
d [F (n− w), F (n+ w)] , if n+ w ∈ N
1
2

(
M

n− 1
2

w +M
n+ 1

2
w

)
, otherwise

(1)

where d(F (i), F (j)) is the distance between frames i and j, computed in terms
of feature F . The second term of the expression is a linear interpolation adopted
for inter-frame positions. This is necessary because the feature F is relative
to a single frame and cannot be directly computed at half-frames. In our case,

V

distance d(F (i), F (j)) is a linear combination of the sum of squared differences of
frames i and j and of the χ2 distance of color histograms extracted from frames
i and j. Both measures are normalized by the number of pixels in a frame. The
selected features have the property to be almost constant immediately before and
after a transition, and to have a constant derivative during a linear transition.

The algorithm starts by simple thresholding the Mn
w values at all frames and

half frames positions with w = 0.5. This gives us a set of candidate positions for
transitions. Now two operations are needed: merging and validation. Merging
is simply the aggregation of adjacent candidate positions, providing a list of
candidate transitions C = {ti = (fi, li)}, where fi is the first position of the
transition, and li is the last position. These may be real transitions (most likely
hard cuts), or false positives, that is shots with high level differences due to
motion. Validation is then performed by measuring the transition Peak value,
defined as:

Peakw(t) = max
f≤n≤l

(Mn
w)−min(Mf−2w

w ,M l+2w
w) (2)

The Peakw(t) value measures the variation in difference values between the
transition and the adjacent shots. In order to validate the transition, therefore,
a significant variation must be observed on at least one side of the candidate
transition.

To detect gradual transitions, we repeat the previous steps at increasing val-
ues of w. Doing so would possibly cause other positions to surpass the threshold
value, thus changing and eventually invalidating previously found transitions.
For this reason, every validated transition is protected by a “safe zone”. This
in practice makes it so that only positions between previous transitions with
distance superior to a certain number of frames are further analyzed.

In total we need to setup four parameters for our algorithm: T , the threshold
on the differences levels; TP , a threshold on the Peak value, which in practice
was usually set to T/2; TS , the number of frames before and after validated
transitions, which won’t be further analyzed; finally, W , the maximum value for
w. A summary of the approach is presented in Algorithm 1.

3.2 Scene detection via hierarchical clustering

Having detected shot boundaries, we now identify scenes by grouping adjacent
shots. Shots are described by means of color histograms, hence relying on visual
features only: given a video, we compute a three-dimensional histogram of each
frame, by quantizing each RGB channel in eight bins, for a total of 512 bins.
Then, we sum histograms from frames belonging to the same shot, thus obtaining
a single L1-normalized histogram for each shot.

In contrast to other approaches that used clustering for scene detection,
we build a distance measure that jointly describes appearance similarity and
temporal proximity. The generic distance between shots xi and xj is therefore
defined as

d(xi,xj) = 1− exp

(
−d

2
1(ψ(xi), ψ(xj)) + α · d22(xi,xj)

2σ2

)
(3)

VI

(a) α = 0 (b) α = 0.5 (c) α = 1

Fig. 1. Effect of α on distance measure d(xi,xj). Higher values of α enforce connections
between near shots and increase the quality of the detected scenes (best viewed in
color).

where ψ(xi) is the normalized histogram of shot xi, d
2
1 is the Bhattacharyya

distance and d22(xi,xj) is the normalized temporal distance between shot xi and
shot xj , while the parameter α tunes the relative importance of color similarity
and temporal distance. To describe temporal distance between frames, d22(xi,xj)
is defined as

d22(xi,xj) =
|mi −mj |

l
(4)

where mi is the index of the central frame of shot xi, and l is the total number of
frames in the video. As shown in Fig. 1, the effect of applying increasing values
of α to d is to raise the similarities of adjacent shots, therefore boosting the
temporal consistency of the resulting groups.

We then cluster shots using hierarchical clustering methods based on com-
plete linkage, where the dissimilarity between two clusters Cx and Cy is defined
as the maximum distance of their elements

d(Cx, Cy) = max
xi∈Cx,xj∈Cy

d(xi,xj) (5)

To cluster N shots, we start with N clusters, each containing a single shot,
then we iteratively find the least dissimilar pair of clusters, according to Eq. 5,
and merge them together, until everything is merged in a single cluster. This
process generates a hierarchy of shots, with N levels and i clusters at level i,
and each level represents a clustering of the input shots.

Once a particular level is selected, our definition of distance does not guar-
antee a completely temporal consistent clustering (i.e. some clusters may still
contain non-adjacent shots); at the same time, too high values of α would lead
to a segmentation that ignores color dissimilarity. The final scene boundaries are
created between adjacent shots that do not belong to the same cluster.

4 Experiments

We firstly describe the measures used to evaluate scene segmentation techniques,
then, we assess the effectiveness of our shot detection and scene approaches by
comparing them against recent methods. We also address two drawbacks of the
existing measures.

VII

4.1 Performance measures

We adopt the Coverage, Overflow and F-Score measures, proposed in [8], to
evaluate our scene detection results. Coverage C measures the quantity of shots
belonging to the same scene correctly grouped together, while Overflow O eval-
uates to what extent shots not belonging to the same scene are erroneously
grouped together. Formally, given the set of automatically detected scenes s =
[s1, s2, ..., sm], and the ground truth s̃ = [s̃1, s̃2, ..., s̃n], where each element of s
and s̃ is a set of shot indexes, the coverage Ct of scene s̃t is proportional to the
longest overlap between si and s̃t:

Ct =
maxi=1...,m #(si ∩ s̃t)

#(s̃t)
(6)

where #(si) is the number of shots in scene si. The overflow of a scene s̃t, Ot, is
the amount of overlap of every si corresponding to s̃t with the two surrounding
scenes s̃t−1 and s̃t+1:

Ot =

∑m
i=1 #(si \ s̃t) ·min(1,#(si ∩ s̃t))

#(̃st−1) + #(s̃t+1)
(7)

The computed per-scene measures can then be aggregated into values for an
entire video as follows:

C =

n∑
t=1

Ct ·
#(s̃t)∑

#(s̃i)
, O =

n∑
t=1

Ot ·
#(s̃t)∑

#(s̃i)
(8)

finally, an F-Score metric can be defined to combine Coverage and Overflow in
a single measure, by taking the harmonic mean of C and 1−O.

We identify two inconveniences of these measures, hence we propose an im-
proved definition. The first one is that, being computed at the shot level, an
error on a short shot is given the same importance of an error on a very long
shot. On the other hand, we propose to normalize Ot with respect to the length
of s̃t instead of that of s̃t−1 and s̃t+1, since we believe that the amount of error
due to overflowing should be related to the current scene length, instead of its
two neighbors. As an example, consider a ground truth segmentation where a
long scene is surrounded by two short scenes: if the detected scene is the union
of all three, the actual amount of overflow for the middle scene is quite small,
while the usage of the original measures would result in a 100% overflow.

Therefore, we propose the Coverage* and Overflow* measures, where the
cardinality operator # is replaced with the number of frames of a scene, l(si),
and overflow is redefined as follows:

O∗t = min

(
1,

∑m
i=1 l(si \ s̃t) ·min(1, l(si ∩ s̃t))

l(̃st)

)
(9)

Note that we limit the amount of overflow to one: this also assures that our
coverage and overflow belong to [0, 1], a property which was not guaranteed in
Eq. 7. The corresponding C∗ and O∗ for an entire video can be obtained in the
same way of Eq. 8, using the newly defined cardinality operator.

VIII

Fig. 2. Two consecutive scenes from the RAI dataset.

4.2 Evaluation

We evaluate our shot and scene detection approach on a collection of ten ran-
domly selected broadcasting videos from the Rai Scuola video archive1, mainly
documentaries and talk shows (see Figure 2). Shots and scenes have been manu-
ally annotated by a set of human experts to define the ground truth. Our dataset
and the corresponding annotations, together with the code of our shot detection
algorithm, are available for download at http://imagelab.ing.unimore.it

For the shot detection task, our dataset contains 987 shot boundaries, 724
of them being hard cuts and 263 gradual transitions. The percentage of gradual
transitions greatly varies from video to video, with V4, V5, V9 and V10 having a
percentage of gradual transitions superior to 44%, and the rest having a mean
of 9%.

The performance of the proposed approach was evaluated and compared
against the recent proposal of Apostolidis et al. [1], using the executable provided
by the authors. Threshold T was set to 80, while the safe zone TS was fixed to 20
frames, and we repeated our gradual transitions search routine up to w = 2.5.
As it can be seen from the experimental results summarized in Table 1, our
approach performs considerably well, achieving high levels of F-measure on all
videos, except in videos with lots of gradual transitions. Indeed, it shows very

1 http://www.scuola.rai.it

IX

Table 1. Characteristics of the RAI Dataset and shot detection performance in terms
of F-measure.

Video % of gradual Avg. trans. duration

V1 0.21 3.82
V2 0.07 1.58
V3 0.09 1.41
V4 0.45 14.10
V5 0.89 19.48
V6 0.06 0.74
V7 0.04 0.49
V8 0.09 1.65
V9 0.58 12.64
V10 0.44 10.53

Video Method in [1] Our method

V1 0.92 0.97
V2 0.92 0.97
V3 0.94 0.95
V4 0.82 0.78
V5 0.55 0.38
V6 0.93 0.96
V7 0.89 0.94
V8 0.94 0.94
V9 0.75 0.76
V10 0.77 0.77

Average 0.84 0.84

Table 2. Performance comparison on the RAI dataset using the Coverage, Overflow
and F-Score measures.

Video
Chasanis et al. [2] Sidiropoulos et al. [7] Our method
F-Score C O F-Score C O F-Score C O

V1 0.70 0.64 0.24 0.72 0.84 0.37 0.73 0.61 0.11
V2 0.36 0.80 0.77 0.59 0.85 0.55 0.73 0.59 0.06
V3 0.58 0.73 0.52 0.58 0.90 0.57 0.60 0.79 0.51
V4 0.50 0.65 0.60 0.33 0.94 0.80 0.77 0.78 0.23
V5 0.25 0.93 0.86 0.66 0.76 0.41 0.76 0.72 0.19
V6 0.18 0.89 0.90 0.71 0.77 0.34 0.73 0.74 0.28
V7 0.37 0.70 0.75 0.51 0.78 0.62 0.70 0.72 0.31
V8 0.62 0.57 0.32 0.45 0.88 0.70 0.60 0.65 0.44
V9 0.27 0.87 0.84 0.43 0.92 0.72 0.83 0.85 0.19
V10 0.54 0.91 0.62 0.44 0.94 0.71 0.61 0.49 0.20

Average 0.44 0.77 0.64 0.54 0.86 0.58 0.70 0.69 0.25

good performances on abrupt and short gradual transitions, while it tends to
fail on very long transitions. Overall, our method achieves competitive results
when compared to [1]. Regarding time performance, the running time of a CPU-
based single-thread implementation of our algorithm is about 13% of the video
duration on a PC with Intel i7 processor at 3.6 GHz, which is more than twice
faster than [1].

To evaluate our scene detection approach, instead, we compare our method
against the multimodal approach presented in [7] and that of [2]. We use the
executable of [7] provided by the authors2 and reimplement the method in [2].
Parameters of [2] were selected to maximize the performance on our dataset.

The overall results on the dataset are shown in Table 2, using Vendrig’s mea-
sures (Coverage, Overflow and F-Score), and in Table 3, using our improved
definitions (Score*, Overflow* and F-Score*). Our method achieves competi-

2 http://mklab.iti.gr/project/video-shot-segm

X

Table 3. Performance comparison on the RAI dataset using the Coverage*, Overflow*
and F-Score* measures.

Video
Chasanis et al. [2] Sidiropoulos et al. [7] Our method
F-Score∗ C∗ O∗ F-Score∗ C∗ O∗ F-Score∗ C∗ O∗

V1 0.70 0.65 0.24 0.70 0.63 0.20 0.82 0.75 0.10
V2 0.60 0.91 0.55 0.61 0.73 0.47 0.67 0.55 0.15
V3 0.51 0.87 0.64 0.51 0.89 0.64 0.60 0.84 0.54
V4 0.54 0.70 0.56 0.22 0.95 0.88 0.73 0.79 0.33
V5 0.34 0.92 0.79 0.57 0.66 0.50 0.79 0.73 0.14
V6 0.20 0.89 0.88 0.74 0.72 0.24 0.68 0.67 0.31
V7 0.37 0.75 0.76 0.56 0.69 0.53 0.80 0.78 0.17
V8 0.59 0.65 0.47 0.15 0.89 0.92 0.62 0.66 0.42
V9 0.07 0.83 0.96 0.15 0.94 0.92 0.85 0.91 0.20
V10 0.50 0.93 0.66 0.11 0.93 0.94 0.67 0.57 0.20

Average 0.44 0.81 0.65 0.43 0.80 0.63 0.72 0.73 0.26

tive results, using both measures, when compared to recent and state-of-the-art
methods like [7], and features a considerably reduced overflow. When shot dura-
tion is taken into account, using our measures, the improvement of our method
over the others is even clearer.

5 Conclusions

We described a novel approach to video re-use by means of shot and scene de-
tection, which is motivated by the need of accessing and re-using the existing
footage in more effective ways. We presented a shot detection approach that
relies on an extended distance measure and that is capable of detecting abrupt
and gradual transitions, with very low execution times, and a scene detection
model that jointly considers temporal proximity and color similarity. Our scene
detection results outperform the state-of-the-art algorithms by a large margin
on the RAI dataset.

Acknowledgments This work was carried out within the project “Città edu-
cante” (CTN01 00034 393801) of the National Technological Cluster on Smart
Communities cofunded by the Italian Ministry of Education, University and
Research - MIUR.

References

1. Apostolidis, E., Mezaris, V.: Fast Shot Segmentation Combining Global and Local
Visual Descriptors. In: IEEE Int. Conf. Acoustics, Speech and Signal Process. pp.
6583–6587 (2014)

2. Chasanis, V.T., Likas, C., Galatsanos, N.P.: Scene detection in videos using shot
clustering and sequence alignment. IEEE Trans. Multimedia 11(1), 89–100 (2009)

3. Hanjalic, A., Lagendijk, R.L., Biemond, J.: Automated high-level movie segmenta-
tion for advanced video-retrieval systems. IEEE Trans. Circuits Syst. Video Technol.
9(4), 580–588 (1999)

XI

4. Ling, X., Yuanxin, O., Huan, L., Zhang, X.: A method for fast shot boundary
detection based on SVM. In: Image and Signal Processing, 2008. CISP’08. Congress
on. vol. 2, pp. 445–449 (2008)

5. Liu, C., Wang, D., Zhu, J., Zhang, B.: Learning a Contextual Multi-Thread Model
for Movie/TV Scene Segmentation. IEEE Trans. Multimedia 15(4), 884–897 (2013)

6. Rasheed, Z., Shah, M.: Detection and representation of scenes in videos. IEEE Trans.
Multimedia 7(6), 1097–1105 (2005)

7. Sidiropoulos, P., Mezaris, V., Kompatsiaris, I., Meinedo, H., Bugalho, M., Trancoso,
I.: Temporal video segmentation to scenes using high-level audiovisual features.
IEEE Trans. Circuits Syst. Video Technol. 21(8), 1163–1177 (2011)

8. Vendrig, J., Worring, M.: Systematic evaluation of logical story unit segmentation.
IEEE Trans. Multimedia 4(4), 492–499 (2002)

9. Yeung, M.M., Yeo, B.L., Wolf, W.H., Liu, B.: Video browsing using clustering and
scene transitions on compressed sequences. In: IS&T/SPIE’s Symposium on Elec-
tronic Imaging: Science & Technology. pp. 399–413 (1995)

