Skip to main content

Rejecting False Positives in Video Object Segmentation

  • Conference paper
  • First Online:
Computer Analysis of Images and Patterns (CAIP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9256))

Included in the following conference series:

Abstract

False-positive removal is a necessary step for robust video object segmentation because of the presence of visual noise introduced by unavoidable factors such as background movements, light changes, artifacts, etc. In this paper we present a set of generic visual cues that enable the discrimination between true positives and false positives detected by a video object segmentation approach. The devised object features encode real-world object properties, such as shape regularity, marked boundaries, color and texture uniformity and motion continuity and can be used in a post-processing layer to reject false positives.

A thorough performance evaluation of the employed features and classifiers is carried out in order to identify which visual cues/classifier allow for a better separability between true and false positives. The experimental results, obtained on three challenging datasets, showed that a post-processing layer exploiting the devised visual features is able a) to reduce the false alarm rate by about 10% to 20%, while keeping the number of true positives almost unaltered, and b) to generalize over different object classes and application domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aha, D.W., Bankert, R.L.: A comparative evaluation of sequential feature selection algorithms, vol. 206, pp. 1–7. SpringerVerlag New York (1995)

    Google Scholar 

  2. Alexe, B., Deselaers, T., Ferrari, V.: Measuring the Objectness of Image Windows. IEEE Transactions on Pattern Analysis and Machine Intelligence, PP(c), 1–14 (2012)

    Google Scholar 

  3. Bai, X., Wang, J., Sapiro, G.: Dynamic color flow: a motion-adaptive color model for object segmentation in video. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 617–630. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Barnich, O., Van Droogenbroeck, M.: ViBe: a universal background subtraction algorithm for video sequences. IEEE transactions on image processing : a publication of the IEEE Signal Processing Society 20(6), 1709–24 (2011)

    Article  Google Scholar 

  5. Bouguet, J.-Y.: Pyramidal Implementation of the Lucas-Kanade Feature Tracker Description of the algorithm (2000)

    Google Scholar 

  6. Brox, T., Malik, J.: Object segmentation by long term analysis of point trajectories. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 282–295. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  7. Brutzer, S., Hoferlin, B., Heidemann, G.: Evaluation of background subtraction techniques for video surveillance. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1937–1944, June 2011

    Google Scholar 

  8. Cheng, C., Koschan, A., Chen, C.-H., Page, D.L., Abidi, M.: Outdoor scene image segmentation based on background recognition and perceptual organization. IEEE Transactions on Image Processing 21(3), 1007–1019 (2012)

    Article  MathSciNet  Google Scholar 

  9. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297 (1995)

    MATH  Google Scholar 

  10. Erdem, C.E., Sankur, B., Tekalp, A.M.: Performance measures for video object segmentation and tracking. IEEE Transactions on Image Processing 13(7), 937–951 (2004)

    Article  Google Scholar 

  11. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. International Journal of Computer Vision 59(2), 167–181 (2004)

    Article  Google Scholar 

  12. Krzanowski, W.J.: Principles of Multivariate Analysis: A User’s Perspective. Oxford University Press, New York (1988)

    MATH  Google Scholar 

  13. Lee, Y. J., Kim, J., Grauman, K.: Key-segments for video object segmentation. In: Proceedings of the 2011 International Conference on Computer Vision, ICCV 2011, pp. 1995–2002 (2011)

    Google Scholar 

  14. Li, L., Huang, W., Gu, I.Y.H., Tian, Q.: Foreground object detection from videos containing complex background. In: Proceedings of the Eleventh ACM International Conference on Multimedia MULTIMEDIA 2003, vol. 3, p. 2 (2003)

    Google Scholar 

  15. Lim, J., Han, B.: Generalized background subtraction using superpixels with label integrated motion estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part V. LNCS, vol. 8693, pp. 173–187. Springer, Heidelberg (2014)

    Google Scholar 

  16. Liu, Z., Jacobs, D.W., Basri, R.: The role of convexity in perceptual completion: beyond good continuation. Vision Research 39(25), 4244–4257 (1999)

    Article  Google Scholar 

  17. Ochs, P., Malik, J., Brox, T.: Segmentation of moving objects by long term video analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 36(6), 1187–1200 (2014)

    Article  Google Scholar 

  18. Papazoglou, A., Ferrari, V.: Fast object segmentation in unconstrained video. In: 2013 IEEE International Conference on Computer Vision, pp. 1777–1784, December 2013

    Google Scholar 

  19. Ochs, P., Brox, T.: Object segmentation in video: a hierarchical variational approach for turning point trajectories into dense regions. In: IEEE International Conference on Computer Vision (ICCV) (2011)

    Google Scholar 

  20. Sheikh, Y., Shah, M.: Bayesian object detection in dynamic scenes. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2005, vol. 1, pp. 74–79 (2005)

    Google Scholar 

  21. Spampinato, C., Palazzo, S.: Enhancing object detection performance by integrating motion objectness and perceptual organization. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 3640–3643, November 2012

    Google Scholar 

  22. Stauffer, C., Grimson, W.: Adaptive background mixture models for real-time tracking. In: Proceedings of 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), pp. 246–252 (1999)

    Google Scholar 

  23. Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 246–252 (1999)

    Google Scholar 

  24. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking (2000)

    Google Scholar 

  25. Zhang, D., Javed, O., Shah, M.: Video object segmentation through spatially accurate and temporally dense extraction of primary object regions. In: 2013 IEEE Conference on Computer Vision and Pattern Recognition, pp. 628–635 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Concetto Spampinato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Giordano, D., Kavasidis, I., Palazzo, S., Spampinato, C. (2015). Rejecting False Positives in Video Object Segmentation. In: Azzopardi, G., Petkov, N. (eds) Computer Analysis of Images and Patterns. CAIP 2015. Lecture Notes in Computer Science(), vol 9256. Springer, Cham. https://doi.org/10.1007/978-3-319-23192-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23192-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23191-4

  • Online ISBN: 978-3-319-23192-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics