Skip to main content

Relational-Based Sensor Data Cleansing

  • Conference paper
  • First Online:
New Trends in Databases and Information Systems (ADBIS 2015)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 539))

Included in the following conference series:

  • East European Conference on Advances in Databases and Information Systems

Abstract

Today sensors are widely used in many monitoring applications. Due to some random environmental effects and/or sensing failures, the collected sensor data is typically noisy. Thus, it is critical to cleanse the data before using it for answering queries or for data analysis. Popular data cleansing approaches, such as classification, prediction and moving average, are not suited for embedded sensor devices, due to their limit storage and processing capabilities. In this paper, we propose a sensor data cleansing approach using the relational-based technologies, including constraints, triggers and granularity-based data aggregation. The proposed approach is simple but effective to cleanse different types of dirty data, including delayed data, incomplete data, incorrect data, duplicate data and missing data. We evaluate the proposed strategy to verify its efficiency and effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Qin, Z., Han, Q., Mehrotra, S., Venkatasubramanian, N.: Quality-aware sensor data management. In: Ammari, H.M. (ed.) The Art of Wireless Sensor Networks, pp. 429–464. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  2. Zimmerman, A.T., Lynch, J.P., Ferrese, F.T.: Market-based Resource Allocation for Distributed Data Processing in Wireless Sensor Networks. ACM Transactions on Embedded Computing Systems 12(3), Article 84 (2013)

    Google Scholar 

  3. Jeffery, S.R., Alonso, G., Franklin, M.J., Hong, W., Widom, J.: Declarative support for sensor data cleaning. In: Fishkin, K.P., Schiele, B., Nixon, P., Quigley, A. (eds.) PERVASIVE 2006. LNCS, vol. 3968, pp. 83–100. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Iftikhar, N., Pedersen, T.B.: Using a Time Granularity Table for Gradual Granular Data Aggregation. Fundamenta Informaticae 132(2), 153–176 (2014)

    Google Scholar 

  5. Iftikhar, N., Pedersen, T.B.: A rule-based tool for gradual granular data aggregation. In: 14th ACM Int. Workshop on DW and OLAP, pp. 1–8. ACM Press, NY (2011)

    Google Scholar 

  6. Iftikhar, N., Pedersen T.B.: An embedded database application for the aggregation of farming device data. In: 16th European Conference on Information Systems in Agriculture and Forestry, pp 51–59. Czech University of Life Sciences (2010)

    Google Scholar 

  7. Iftikhar, N., Pedersen, T.B.: Gradual data aggregation in multi-granular fact tables on resource-constrained systems. In: Setchi, R., Jordanov, I., Howlett, R.J., Jain, L.C. (eds.) KES 2010, Part III. LNCS, vol. 6278, pp. 349–358. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Iftikhar, N.: Ratio-based gradual aggregation of data. In: Benlamri, R. (ed.) NDT 2012, Part I. CCIS, vol. 293, pp. 316–329. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Iftikhar, N.: Integration, aggregation and exchange of farming device data: a high level perspective. In: 2nd International Conference on the Applications of Digital Information and Web Technologies, pp. 14–19. IEEE (2009)

    Google Scholar 

  10. Pedersen, T.B., Jensen, C.S., Dyreson, C.E.: Supporting imprecision in multidimensional databases using granularities. In: 11th International Conference on Scientific and Statistical Database Management, pp. 90–101. IEEE (1999)

    Google Scholar 

  11. LandIT. http://daisy.aau.dk/education/proposals/farmingdevicedata.php

  12. UTC. http://en.wikipedia.org/wiki/Coordinated_Universal_Time

  13. SQLite. https://sqlite.org

  14. Darcy, P., Stantic, B., Sattar, A.: Correcting missing data anomalies with clausal defeasible logic. In: Catania, B., Ivanović, M., Thalheim, B. (eds.) ADBIS 2010. LNCS, vol. 6295, pp. 149–163. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  15. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. Morgan Kaufmann (2006)

    Google Scholar 

  16. Naumann, F., Herschel, M.: An Introduction to Duplicate Detection. Morgan & Claypool Publishers (2010)

    Google Scholar 

  17. Rajaraman, A., Ullman, J.D.: Mining of Massive Datasets. Cambridge University Press (2012)

    Google Scholar 

  18. Maurice, V.K.: Managing Uncertainty: The Road Towards Better Data Interoperability. IT - Information Technology 54(3), 138–146 (2012)

    Article  MathSciNet  Google Scholar 

  19. Kim, W., Choi, B.J., Hong, E.K., Kim, S.K., Lee, D.: A Taxonomy of Dirty Data. Data Mining and Knowledge Discovery 7(1), 81–99 (2003)

    Article  MathSciNet  Google Scholar 

  20. Rahm, E., Do, H.H.: Data Cleaning: Problems and Current Approaches. IEEE Data Engineering Bulletin 23(4), 3–13 (2000)

    Google Scholar 

  21. Barateiro, J., Galhardas, H.: A Survey of Data Quality Tools. IEEE Data Engineering Bulletin, Datenbank-Spektrum 14, 15–21 (2005)

    Google Scholar 

  22. Rosenmuller, M., Siegmund, N., Schirmeier, H., Sincero, J., Apel, S., Leich, T., Spinczyk, O., Saake, G.: FAME-DBMS: tailor-made data management solutions for embedded systems. In: EDBT Workshop on Software Engineering for Tailor-made Data Management, pp. 1–6. ACM Press, NY (2008)

    Google Scholar 

  23. Kim, G.J., Baek, S.C., Lee, H.S., Lee, H.D., Joe, M.J.: LGeDBMS: a small DBMS for embedded system with flash memory. In: 32nd International Conference on Very Large Data Bases, pp. 1255–1258 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiufeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Iftikhar, N., Liu, X., Nordbjerg, F.E. (2015). Relational-Based Sensor Data Cleansing. In: Morzy, T., Valduriez, P., Bellatreche, L. (eds) New Trends in Databases and Information Systems. ADBIS 2015. Communications in Computer and Information Science, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-319-23201-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23201-0_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23200-3

  • Online ISBN: 978-3-319-23201-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics