Skip to main content

Automatically Generating Streamlined Constraint Models with Essence and Conjure

  • Conference paper
  • First Online:
Principles and Practice of Constraint Programming (CP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9255))

  • 2237 Accesses

Abstract

Streamlined constraint reasoning is the addition of uninferred constraints to a constraint model to reduce the search space, while retaining at least one solution. Previously, effective streamlined models have been constructed by hand, requiring an expert to examine closely solutions to small instances of a problem class and identify regularities. We present a system that automatically generates many conjectured regularities for a given Essence specification of a problem class by examining the domains of decision variables present in the problem specification. These conjectures are evaluated independently and in conjunction with one another on a set of instances from the specified class via an automated modelling tool-chain comprising of Conjure, Savile Row and Minion. Once the system has identified effective conjectures they are used to generate streamlined models that allow instances of much larger scale to be solved. Our results demonstrate good models can be identified for problems in combinatorial design, Ramsey theory, graph theory and group theory - often resulting in order of magnitude speed-ups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akgun, O., Frisch, A.M., Gent, I.P., Hussain, B.S., Jefferson, C., Kotthoff, L., Miguel, I., Nightingale, P.: Automated symmetry breaking and model selection in Conjure. In: Schulte, C. (ed.) CP 2013. LNCS, vol. 8124, pp. 107–116. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  2. Akgün, O., Miguel, I., Jefferson, C., Frisch, A.M., Hnich, B.: Extensible automated constraint modelling. In: AAAI 2011: Twenty-Fifth Conference on Artificial Intelligence (2011)

    Google Scholar 

  3. Ayel, J., Favaron, O.: Helms are graceful. Progress in Graph Theory (Waterloo, Ont., 1982), pp. 89–92. Academic Press, Toronto (1984)

    Google Scholar 

  4. Charnley, J., Colton, S., Miguel, I.: Automatic generation of implied constraints. In: ECAI, vol. 141, pp. 73–77 (2006)

    Google Scholar 

  5. Colton, S., Miguel, I.: Constraint generation via automated theory formation. In: Walsh, T. (ed.) Proceedings of the Seventh International Conference on Principles and Practice of Constraint Programming, pp. 575–579 (2001)

    Google Scholar 

  6. Colton, S.: Automated Theory Formation in Pure Mathematics. Ph.D. thesis, University of Edinburgh (2001)

    Google Scholar 

  7. Frisch, A.M., Jefferson, C., Hernandez, B.M., Miguel, I.: The rules of constraint modelling. In: Proc. of the IJCAI 2005, pp. 109–116 (2005)

    Google Scholar 

  8. Frisch, A.M., Harvey, W., Jefferson, C., Martínez-Hernández, B., Miguel, I.: Essence: A constraint language for specifying combinatorial problems. Constraints 13(3), 268–306 (2008). doi:10.1007/s10601-008-9047-y

    Article  MATH  MathSciNet  Google Scholar 

  9. Frucht, R.: Graceful numbering of wheels and related graphs. Annals of the New York Academy of Sciences 319(1), 219–229 (1979)

    Article  MathSciNet  Google Scholar 

  10. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In: ECAI, vol. 141, pp. 98–102 (2006)

    Google Scholar 

  11. Gomes, C., Sellmann, M.: Streamlined constraint reasoning. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 274–289. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Huczynska, S., McKay, P., Miguel, I., Nightingale, P.: Modelling equidistant frequency permutation arrays: an application of constraints to mathematics. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 50–64. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  13. Kouril, M., Franco, J.: Resolution tunnels for improved SAT solver performance. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 143–157. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Langford, C.D.: Problem. The Mathematical Gazette, 287–287 (1958)

    Google Scholar 

  15. Le Bras, R., Gomes, C.P., Selman, B.: Double-wheel graphs are graceful. In: Proceedings of the Twenty-Third international Joint Conference on Artificial Intelligence, pp. 587–593. AAAI Press (2013)

    Google Scholar 

  16. Le Bras, R., Gomes, C.P., Selman, B.: On the erdős discrepancy problem. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 440–448. Springer, Heidelberg (2014)

    Google Scholar 

  17. Ma, K., Feng, C.: On the gracefulness of gear graphs. Math. Practice Theory 4, 72–73 (1984)

    MathSciNet  Google Scholar 

  18. Marriott, K., Nethercote, N., Rafeh, R., Stuckey, P.J., de la Banda, M.G., Wallace, M.: The design of the zinc modelling language. Constraints 13(3) (2008). doi:10.1007/s10601-008-9041-4

  19. Nightingale, P., Akgün, Ö., Gent, I.P., Jefferson, C., Miguel, I.: Automatically improving constraint models in savile row through associative-commutative common subexpression elimination. In: O’Sullivan, B. (ed.) CP 2014. LNCS, vol. 8656, pp. 590–605. Springer, Heidelberg (2014)

    Google Scholar 

  20. Prestwich, S.: CSPLib problem 028: Balanced incomplete block designs. http://www.csplib.org/Problems/prob028

  21. Rosa, A.: On certain valuations of the vertices of a graph. In: Theory of Graphs Internat. Symposium, Rome, pp. 349–355 (1966)

    Google Scholar 

  22. Schur, I.: Über die kongruenz \( x^m+ y^m \equiv z^m ~(mod \; p) \). Jahresber. Deutsch. Math. Verein 25, 114–117 (1916)

    MATH  Google Scholar 

  23. Slaney, J., Fujita, M., Stickel, M.: Automated reasoning and exhaustive search: Quasigroup existence problems. Computers & Mathematics with Applications 29(2), 115–132 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Van der Waerden, B.L.: Beweis einer baudetschen vermutung. Nieuw Arch. Wisk 15(2), 212–216 (1927)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Wetter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wetter, J., Akgün, Ö., Miguel, I. (2015). Automatically Generating Streamlined Constraint Models with Essence and Conjure . In: Pesant, G. (eds) Principles and Practice of Constraint Programming. CP 2015. Lecture Notes in Computer Science(), vol 9255. Springer, Cham. https://doi.org/10.1007/978-3-319-23219-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23219-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23218-8

  • Online ISBN: 978-3-319-23219-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics