Abstract
Convexification is a fundamental technique in (mixed-integer) nonlinear optimization and many convex relaxations are parametrized by variable bounds, i.e., the tighter the bounds, the stronger the relaxations. This paper studies how bound tightening can improve convex relaxations for power network optimization. It adapts traditional constraint-programming concepts (e.g., minimal network and bound consistency) to a relaxation framework and shows how bound tightening can dramatically improve power network optimization. In particular, the paper shows that the Quadratic Convex relaxation of power flows, enhanced by bound tightening, almost always outperforms the state-of-the-art Semi-Definite Programming relaxation on the optimal power flow problem.
NICTA—NICTA is funded by the Australian Government through the Department of Communications and the Australian Research Council through the ICT Centre of Excellence Program.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Achterberg, T.: Scip: solving constraint integer programs. Mathematical Programming Computation 1(1), 1–41 (2009). http://dx.doi.org/10.1007/s12532-008-0001-1
Bai, X., Wei, H., Fujisawa, K., Wang, Y.: Semidefinite programming for optimal power flow problems. International Journal of Electrical Power & Energy Systems 30(67), 383–392 (2008)
Belotti, P.: Couenne: User manual (2009). https://projects.coin-or.org/Couenne/ (accessed April 10, 2015)
Belotti, P., Cafieri, S., Lee, J., Liberti, L.: On feasibility based bounds tightening (2012). http://www.optimization-online.org/DB_HTML/2012/01/3325.html
Belotti, P., Lee, J., Liberti, L., Margot, F., Wachter, A.: Branching and bounds tightening techniques for non-convex minlp. Optimization Methods Software 24(4–5), 597–634 (2009)
Benhamou, F., McAllester, D., Van Hentenryck, P.: Clp (intervals) revisited.Tech. rep., Brown University, Providence, RI, USA (1994)
Bent, R., Coffrin, C., Gumucio, R., Van Hentenryck, P.: Transmission network expansion planning: Bridging the gap between ac heuristics and dc approximations. In: Proceedings of the 18th Power Systems Computation Conference (PSCC 2014), Wroclaw, Poland (2014)
Berthold, T., Heinz, S., Vigerske, S.: Extending a cip framework to solvemiqcps. In: Lee, J., Leyffer, S. (eds.) Mixed Integer Nonlinear Programming. The IMA Volumes in Mathematics and its Applications, vol. 154, pp. 427–444. Springer New York (2012)
Chen, Y., Luh, P., Guan, C., Zhao, Y., Michel, L., Coolbeth, M., Friedland, P., Rourke, S.: Short-term load forecasting: Similar day-based wavelet neural networks. IEEE Transactions on Power Systems 25(1), 322–330 (2010)
Coffrin, C., Gordon, D., Scott, P.: NESTA, The Nicta Energy System Test Case Archive. CoRR abs/1411.0359 (2014). http://arxiv.org/abs/1411.0359
Coffrin, C., Hijazi, H., Van Hentenryck, P.: The QC Relaxation: Theoretical and Computational Results on Optimal Power Flow. CoRR abs/1502.07847 (2015). http://arxiv.org/abs/1502.07847
Coffrin, C., Van Hentenryck, P.: Transmission system restoration: Co-optimization of repairs, load pickups, and generation dispatch. International Journal of Electrical Power & Energy Systems (2015) (forthcoming)
Farivar, M., Clarke, C., Low, S., Chandy, K.: Inverter var control for distribution systems with renewables. In: 2011 IEEE International Conference on Smart Grid Communications (SmartGridComm), pp. 457–462, October 2011
Fisher, E., O’Neill, R., Ferris, M.: Optimal transmission switching. IEEE Transactions on Power Systems 23(3), 1346–1355 (2008)
Fourer, R., Gay, D.M., Kernighan, B.: AMPL: a mathematical programming language. In: Wallace, S.W. (ed.) Algorithms and Model Formulations in Mathematical Programming, pp. 150–151. Springer-Verlag New York Inc., New York (1989)
Fu, Y., Shahidehpour, M., Li, Z.: Security-constrained unit commitment with ac constraints*. IEEE Transactions on Power Systems 20(3), 1538–1550 (2005)
Hedman, K., Ferris, M., O’Neill, R., Fisher, E., Oren, S.: Co-optimization of generation unit commitment and transmission switching with n-1 reliability. In: 2010 IEEE Power and Energy Society General Meeting, pp. 1–1, July 2010
Hijazi, H., Coffrin, C., Van Hentenryck, P.: Convex quadratic relaxations of mixed-integer nonlinear programs in power systems (2013). http://www.optimization-online.org/DB_HTML/2013/09/4057.html
Hijazi, H., Thiebaux, S.: Optimal ac distribution systems reconfiguration. In: Proceedings of the 18th Power Systems Computation Conference (PSCC 2014), Wroclaw, Poland (2014)
Jabr, R.: Radial distribution load flow using conic programming. IEEE Transactions on Power Systems 21(3), 1458–1459 (2006)
Jabr, R.: Optimization of ac transmission system planning. IEEE Transactions on Power Systems 28(3), 2779–2787 (2013)
Kundur, P.: Power System Stability and Control. McGraw-Hill Professional (1994)
Lavaei, J., Low, S.: Zero duality gap in optimal power flow problem. IEEE Transactions on Power Systems 27(1), 92–107 (2012)
Lehmann, K., Grastien, A., Van Hentenryck, P.: AC-Feasibility on Tree Networks is NP-Hard. IEEE Transactions on Power Systems (2015) (to appear)
Liberti, L.: Writing global optimization software. In: Liberti, L., Maculan, N. (eds.) Global Optimization, Nonconvex Optimization and Its Applications, vol. 84, pp. 211–262. Springer, US (2006). http://dx.doi.org/10.1007/0-387-30528-9_8
Madani, R., Ashraphijuo, M., Lavaei, J.: Promises of conic relaxation for contingency-constrained optimal power flow problem (2014). http://www.ee.columbia.edu/ lavaei/SCOPF_2014.pdf (accessed February 22, 2015)
McCormick, G.: Computability of global solutions to factorable nonconvex programs: Part i convex underestimating problems. Mathematical Programming 10, 146–175 (1976)
Miller, J.: Power system optimization smart grid, demand dispatch, and microgrids, September 2011. http://www.netl.doe.gov/smartgrid/referenceshelf/presentations/SE%20Dist%20Apparatus%20School_Final_082911_rev2.pdf (accessed April 22, 2012)
Momoh, J., Adapa, R., El-Hawary, M.: A review of selected optimal power flow literature to 1993. i. nonlinear and quadratic programming approaches. IEEE Transactions on Power Systems 14(1), 96–104 (1999)
Momoh, J., El-Hawary, M., Adapa, R.: A review of selected optimal power flow literature to 1993. ii. newton, linear programming and interior point methods. IEEE Transactions on Power Systems 14(1), 105–111 (1999)
Montanari, U.: Networks of Constraints : Fundamental Properties and Applications to Picture Processing. Information Science 7(2), 95–132 (1974)
Ott, A.: Unit commitment in the pjm day-ahead and real-time markets, June 2010. http://www.ferc.gov/eventcalendar/Files/20100601131610-Ott,%20PJM.pdf (accessed April 22, 2012)
Purchala, K., Meeus, L., Van Dommelen, D., Belmans, R.: Usefulness of DC power flow for active power flow analysis. In: Power Engineering Society General Meeting, pp. 454–459 (2005)
Ryoo, H., Sahinidis, N.: A branch-and-reduce approach to global optimization. Journal of Global Optimization 8(2), 107–138 (1996)
Sahinidis, N.: Global optimization and constraint satisfaction: the branch-and-reduce approach. In: Bliek, C., Jermann, C., Neumaier, A. (eds.) Global Optimization and Constraint Satisfaction. LNCS, vol. 2861, pp. 1–16. Springer, Heidelberg (2003)
Toh, K.C., Todd, M., Ttnc, R.H.: Sdpt3 - a matlab software package for semidefinite programming. Optimization Methods and Software 11, 545–581 (1999)
Van Hentenryck, P., McAllister, D., Kapur, D.: Solving Polynomial Systems Using a Branch and Prune Approach. SIAM Journal on Numerical Analysis 34(2) (1997)
Van Hentenryck, P., Michel, L., Deville, Y.: Numerica: a Modeling Language for Global Optimization. The MIT Press, Cambridge (1997)
Van Hentenryck, P., Saraswat, V., Deville, Y.: The design, implementation, and evaluation of the constraint language cc(FD). In: Podelski, A. (ed.) Constraint Programming: Basics and Trends. LNCS, vol. 910, pp. 293–316. Springer, Heidelberg (1995)
Verma, A.: Power grid security analysis: An optimization approach. Ph.D. thesis, Columbia University (2009)
Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Mathematical Programming 106(1), 25–57 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Coffrin, C., Hijazi, H.L., Van Hentenryck, P. (2015). Strengthening Convex Relaxations with Bound Tightening for Power Network Optimization. In: Pesant, G. (eds) Principles and Practice of Constraint Programming. CP 2015. Lecture Notes in Computer Science(), vol 9255. Springer, Cham. https://doi.org/10.1007/978-3-319-23219-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-23219-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23218-8
Online ISBN: 978-3-319-23219-5
eBook Packages: Computer ScienceComputer Science (R0)