Skip to main content

Analysis of Patient Groups and Immunization Results Based on Subspace Clustering

  • Conference paper
  • First Online:
Brain Informatics and Health (BIH 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9250))

Included in the following conference series:

  • 2690 Accesses

Abstract

Biomedical experts are increasingly confronted with what is often called Big Data, an important subclass of high-dimensional data. High-dimensional data analysis can be helpful in finding relationships between records and dimensions. However, due to data complexity, experts are decreasingly capable of dealing with increasingly complex data. Mapping higher dimensional data to a smaller number of relevant dimensions is a big challenge due to the curse of dimensionality. Irrelevant, redundant, and conflicting dimensions affect the effectiveness and efficiency of analysis. Furthermore, the possible mappings from high- to low-dimensional spaces are ambiguous. For example, the similarity between patients may change by considering different combinations of relevant dimensions (subspaces). We show the potential of subspace analysis for the interpretation of high-dimensional medical data. Specifically, we analyze relationships between patients, sets of patient attributes, and outcomes of a vaccination treatment by means of a subspace clustering approach. We present an analysis workflow and discuss future directions for high-dimensional (medical) data analysis and visual exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge discovery and interactive data mining in bioinformatics - state-of-the-art, future challenges and research directions. BMC Bioinformatics 15, I1 (2014)

    Article  Google Scholar 

  2. Holzinger, A.: Biomedical Informatics: Discovering Knowledge in Big Data. Springer, New York (2014)

    Book  Google Scholar 

  3. Hinneburg, A., Aggarwal, C.C., Keim, D.A.: What is the nearest neighbor in high dimensional spaces? In: Proc. Int. Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc., pp. 506–515 (2000)

    Google Scholar 

  4. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques. 3rd edn. Morgan Kaufmann Publishers Inc

    Google Scholar 

  5. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Proc. Int. Conference on Database Theory, pp. 217–235 (1999)

    Google Scholar 

  6. Kriegel, H.P., Kröger, P., Zimek, A.: Clustering high-dimensional data: A survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Transactions on Knowledge Discovery from Data (TKDD) 3, 1–58 (2009)

    Article  Google Scholar 

  7. Fua, Y.H., Ward, M., Rundensteiner, E.: Hierarchical parallel coordinates for exploration of large data sets. In: Proc. Conference on Visualization, pp. 43–50. IEEE CS Press (1999)

    Google Scholar 

  8. Buja, A., Swayne, D.F., Littman, M.L., Dean, N., Hofmann, H., Chen, L.: Data visualization with multidimensional scaling. Journal of Computational and Graphical Statistics 17, 444–472 (2008)

    Article  MathSciNet  Google Scholar 

  9. Seo, J., Shneiderman, B.: Interactively exploring hierarchical clustering results. Computer 35, 80–86 (2002)

    Google Scholar 

  10. Tatu, A., Zhang, L., Bertini, E., Schreck, T., Keim, D., Bremm, S., von Landesberger, T.: Clustnails: Visual analysis of subspace clusters. Tsinghua Science and Technology 17, 419–428 (2012)

    Article  Google Scholar 

  11. Tatu, A., Maaß, F., Färber, I., Bertini, E., Schreck, T., Seidl, T., Keim, D.: Subspace search and visualization to make sense of alternative clusterings in high-dimensional data. In: Proc. IEEE Conf. Visual Analytics Science and Technology, pp. 63–72 (2012)

    Google Scholar 

  12. Assent, I., Krieger, R., Müller, E., Seidl, T.: Visa: visual subspace clustering analysis. SIGKDD Explor. Newsl. 9, 5–12 (2007)

    Article  Google Scholar 

  13. Turkay, C., Lex, A., Streit, M., Pfister, H., Hauser, H.: Characterizing cancer subtypes using dual analysis in caleydo StratomeX. IEEE Computer Graphics and Applications 34, 38–47 (2014)

    Article  Google Scholar 

  14. Liu, H., Motoda, H.: Computational Methods of Feature Selection. Chapman & Hall/CRC (2007)

    Google Scholar 

  15. Aggarwal, C., Procopiuc, C., Wolf, J., Yu, P., Park, J.: Fast algorithms for projected clustering. In: Proc. ACM Int. Conf. on Management of Data, pp. 61–72 (1999)

    Google Scholar 

  16. Müller, E., Günnemann, S., Assent, I., Seidl, T.: Evaluating clustering in subspace projections of high dimensional data 2, 1270–1281 (2009)

    Google Scholar 

  17. Trtica-Majnaric, L., Zekic-Susac, M., Sarlija, N., Vitale, B.: Prediction of influenza vaccination outcome by neural networks and logistic regression. Journal of Biomedical Informatics 43, 774–781 (2010)

    Article  Google Scholar 

  18. Berthold, M., Cebron, N., Dill, F., Gabriel, T., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel, K., Wiswedel, B.: KNIME: The Konstanz Information Miner. In: Studies in Classification, Data Analysis, and Knowledge Organization. Springer (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hund, M. et al. (2015). Analysis of Patient Groups and Immunization Results Based on Subspace Clustering. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds) Brain Informatics and Health. BIH 2015. Lecture Notes in Computer Science(), vol 9250. Springer, Cham. https://doi.org/10.1007/978-3-319-23344-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23344-4_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23343-7

  • Online ISBN: 978-3-319-23344-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics