Abstract
Continuous-time Markov chain (CTMC) models have become a central tool for understanding the dynamics of complex reaction networks and the importance of stochasticity in the underlying biochemical processes. When such models are employed to answer questions in applications, in order to ensure that the model provides a sufficiently accurate representation of the real system, it is of vital importance that the model parameters are inferred from real measured data. This, however, is often a formidable task and all of the existing methods fail in one case or the other, usually because the underlying CTMC model is high-dimensional and computationally difficult to analyze. The parameter inference methods that tend to scale best in the dimension of the CTMC are based on so-called moment closure approximations. However, there exists a large number of different moment closure approximations and it is typically hard to say a priori which of the approximations is the most suitable for the inference procedure. Here, we propose a moment-based parameter inference method that automatically chooses the most appropriate moment closure method. Accordingly, contrary to existing methods, the user is not required to be experienced in moment closure techniques. In addition to that, our method adaptively changes the approximation during the parameter inference to ensure that always the best approximation is used, even in cases where different approximations are best in different regions of the parameter space.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bertaux, F., Stoma, S., Drasdo, D., Batt, G.: Modeling dynamics of cell-to-cell variability in TRAIL-induced apoptosis explains fractional killing and predicts reversible resistance. PLoS Comput. Biol. 10(10), e1003893 (2014)
Engblom, S.: Computing the moments of high dimensional solutions of the master equation. Appl. Math. Comput. 180(2), 498–515 (2006)
Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)
Gillespie, D.: A rigorous derivation of the chemical master equation. Phys. A 188(1–3), 404–425 (1992)
Goutsias, J., Jenkinson, G.: Markovian dynamics on complex reaction networks. Phys. Rep. 529, 199–264 (2013)
Hasty, J., Pradines, J., Dolnik, M., Collins, J.: Noise-based switches and amplifiers for gene expression. Proc. Nat. Acad. Sci. U.S.A. 97(5), 2075–2080 (2000)
Hespanha, J.: StochDynTools - a MATLAB toolbox to compute moment dynamics for stochastic networks of bio-chemical reactions (2006). http://www.ece.ucsb.edu/~hespanha
Hespanha, J.: Moment closure for biochemical networks. In: Proceedings of the 3rd International Symposium on Communications, Control and Signal Processing (IEEE), St Julians, Malta, pp. 142–147 (2008)
Kügler, P.: Moment fitting for parameter inference in repeatedly and partially observed stochastic biological models. PLoS ONE 7(8), e43001 (2012)
Lillacci, G., Khammash, M.: The signal within the noise: efficient inference of stochastic gene regulation models using fluorescence histograms and stochastic simulations. Bioinformatics 29(18), 2311–2319 (2013)
Matis, T., Guardiola, I.: Achieving moment closure through cumulant neglect. Math. J. 12 (2010). doi:10.3888/tmj.12-2
McAdams, H., Arkin, A.: Stochastic mechanisms in gene expression. Proc. Nat. Acad. Sci. U.S.A. 94(3), 814–819 (1997)
Munsky, B., Khammash, M.: The finite state projection algorithm for the solution of the chemical master equation. J. Chem. Phys. 124, 044104 (2006)
Neuert, G., Munsky, B., Tan, R., Teytelman, L., Khammash, M., van Oudenaarden, A.: Systematic identification of signal-activated stochastic gene regulation. Science 339, 584–587 (2013)
Parise, F., Lygeros, J., Ruess, J.: Bayesian inference for stochastic individual-based models of ecological systems: an optimal pest control case study. Front. Environ. Sci. 3, 42 (2015)
Ruess, J., Lygeros, J.: Moment-based methods for parameter inference and experiment design for stochastic biochemical reaction networks. ACM Trans. Model. Comput. Simul. (TOMACS) 25(2), 8 (2015)
Ruess, J., Milias-Argeitis, A., Lygeros, J.: Designing experiments to understand the variability in biochemical reaction networks. J. R. Soc. Interface 10(88), 20130588 (2013)
Ruess, J., Milias-Argeitis, A., Summers, S., Lygeros, J.: Moment estimation for chemically reacting systems by extended Kalman filtering. J. Chem. Phys. 135, 165102 (2011)
Ruess, J., Parise, F., Milias-Argeitis, A., Khammash, M., Lygeros, J.: Iterative experiment design guides the characterization of a light-inducible gene expression circuit. Proc. Nat. Acad. Sci. U.S.A. 112(26), 8148–8153 (2015)
Samoilov, M., Arkin, A.: Deviant effects in molecular reaction pathways. Nat. Biotechnol. 24(10), 1235–1240 (2006)
Singh, A., Hespanha, J.: Lognormal moment closures for biochemical reactions. In: 45th IEEE Conference on Decision and Control, pp. 2063–2068 (2006)
Whittle, P.: On the use of the normal approximation in the treatment of stochastic processes. J. Roy. Stat. Soc.: Ser. A (Methodol.) 19, 268–281 (1957)
Wolf, V., Goel, R., Mateescu, M., Henzinger, T.: Solving the chemical master equation using sliding windows. BMC Syst. Biol. 4, 42 (2010)
Zechner, C., Ruess, J., Krenn, P., Pelet, S., Peter, M., Lygeros, J., Koeppl, H.: Moment-based inference predicts bimodality in transient gene expression. Proc. Nat. Acad. Sci. U.S.A. 109(21), 8340–8345 (2012)
Acknowledgements
This work was partly supported by the German Research Foundation (DFG) as part of the Transregional Collaborative Research Center “Automatic Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS, http://www.avacs.org/), by the European Research Council (ERC) under grant 267989 (QUAREM) and by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE) and Z211-N23 (Wittgenstein Award). J.R. acknowledges support from the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007–2013) under REA grant agreement no. 291734.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Bogomolov, S., Henzinger, T.A., Podelski, A., Ruess, J., Schilling, C. (2015). Adaptive Moment Closure for Parameter Inference of Biochemical Reaction Networks. In: Roux, O., Bourdon, J. (eds) Computational Methods in Systems Biology. CMSB 2015. Lecture Notes in Computer Science(), vol 9308. Springer, Cham. https://doi.org/10.1007/978-3-319-23401-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-23401-4_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23400-7
Online ISBN: 978-3-319-23401-4
eBook Packages: Computer ScienceComputer Science (R0)