Abstract
Markerless 3D tracking of hands in action or in interaction with objects provides rich information that can be used to interpret a number of human activities. In this paper, we review a number of relevant methods we have proposed. All of them focus on hands, objects and their interaction and follow a generative approach. The major strength of such an approach is the straightforward fashion in which arbitrarily complex priors can be easily incorporated towards solving the tracking problem and their capability to generalize to greater and/or different domains. The proposed generative approach is implemented in a single, unified computational framework.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Athitsos, V., Sclaroff, S.: Estimating 3d hand pose from a cluttered image. In: CVPR 2003. vol. 2, pp. 432–439. Madison, USA (2003)
Ballan, L., Taneja, A., Gall, J., Van Gool, L., Pollefeys, M.: Motion Capture of Hands in Action Using Discriminative Salient Points. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 640–653. Springer, Heidelberg (2012)
Bray, M., Koller-Meier, E., Van Gool, L.: Smart particle filtering for high-dimensional tracking. Comput. Vis. Image Underst. 106(1), 116–129 (2007)
de Campos, T., Murray, D.: Regression-based hand pose estimation from multiple cameras. In: CVPR 2006. vol. 1, pp. 782–789. New York, USA (2006)
Douvantzis, P., Oikonomidis, I., Kyriazis, N., Argyros, A.: Dimensionality reduction for efficient single frame hand pose estimation. In: Chen, M., Leibe, B., Neumann, B. (eds.) Computer Vision Systems. LNCS, vol. 7963, pp. 143–152. Springer, Heidelberg (2013)
Gallese, V., Goldman, A.: Mirror neurons and the simulation theory of mind-reading. Trends Cogn. Sci. 2(12), 493–501 (1998)
Grezes, J., Decety, J.: Functional anatomy of execution, mental simulation, observation, and verb generation of actions: a meta-analysis. Hum. Brain Mapp. 12(1), 1–19 (2001)
Keskin, C., Kirac, F., Kara, Y., Akarun, L.: Real time hand pose estimation using depth sensors. In: ICCV 2011. pp. 1228–1234. Barcelona, Spain (2011)
Keskin, C., Kıraç, F., Kara, Y., Akarun, L.: Hand pose estimation and hand shape classification using multi-layered randomized decision forests. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 852–863. Springer, Heidelberg (2012)
Kim, K., Lepetit, V., Woo, W.: Keyframe-based modeling and tracking of multiple 3D objects. In: ISMAR 2010. pp. 193–198. Seoul, Japan (2010)
Kyriazis, N.: A computational framework for observing and understanding the interaction of humans with objects of their environment. Ph.D. thesis, University of Crete (2014)
Kyriazis, N., Argyros, A.: Physically plausible 3D scene tracking: The single actor hypothesis. In: CVPR 2013. pp. 9–16. Portland, Oregon, USA (2013)
Kyriazis, N., Argyros, A.: Scalable 3D tracking of multiple interacting objects. In: CVPR 2014. pp. 3430–3437. Columbus, Ohio, USA (2014)
MacCormick, J., Isard, M.: Partitioned sampling, articulated objects, and interface-quality hand tracking. In: In: Proceedings of the 6th EuropeanConference on Computer Vision-Part II, ECCV 2000. LNCS, pp. 3–19. Springer, Heidelberg (2000)
Makris, A., Kyriazis, N., Argyros, A.: Hierarchical particle filtering for 3d hand tracking. In: CVPR 2015. pp. 8–17. Boston, USA (2015)
Malassiotis, S., Strintzis, M.G.: Real-time hand posture recognition using range data. Image Vis. Comput. 26(7), 1027–1037 (2008)
Michel, D., Panagiotakis, C., Argyros, A.A.: Tracking the articulated motion of the human body with two RGBD cameras. Mach. Vis. Appl. 26(1), 41–54 (2013)
Oikonomidis, I., Kyriazis, N., Argyros, A.: Full dof tracking of a hand interacting with an object by modeling occlusions and physical constraints. In: ICCV 2011. pp. 2088–2095. Barcelona, Spain (2011)
Oikonomidis, I., Kyriazis, N., Argyros, A., et al.: Full dof tracking of a hand interacting with an object by modeling occlusions and physical constraints. In: ICCV 2011. pp. 2088–2095. Barcelona, Spain (2011)
Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Efficient model-based 3D tracking of hand articulations using kinect. In: BMVC 2011. p. 3. Dundee, UK (2011)
Oikonomidis, I., Kyriazis, N., Tzevanidis, K., Argyros, A., et al.: Tracking hand articulations: relying on 3D visual hulls versus relying on multiple 2D cues. In: ISUVR 2013. pp. 7–10. Daejeon, South Korea (2013)
Oikonomidis, I., Lourakis, M., Argyros, A., et al.: Evolutionary quasi-random search for hand articulations tracking. In: CVPR 2014. pp. 3422–3429. Columbus, Ohio, USA (2014)
Oikonomidis, I., Kyriazis, N., Argyros, A.A.: Tracking the articulated motion of two strongly interacting hands. In: CVPR 2012. pp. 1862–1869. Providence, Rhode Island (2012)
Oikonomidis, I., Kyriazis, N., Argyros, A.: Markerless and efficient 26-DOF hand pose recovery. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) Computer Vision—ACCV 2010. LNCS, vol. 6494, pp. 744–757. Springer, Heidelberg (2011)
Padeleris, P., Zabulis, X., Argyros, A., et al.: Head pose estimation on depth data based on particle swarm optimization. In: CVPRW 2012. pp. 42–49. Providence, USA (2012)
Patel, M., Ek, C.H., Kyriazis, N., Argyros, A., Miro, J.V., Kragic, D.: Language for learning complex human-object interactions. In: ICRA 2013. pp. 4997–5002. Karlsruhe, Germany (2013)
Pham, T.H., Kheddar, A., Qammaz, A., Argyros, A.A.: Towards force sensing from vision: observing hand-object interactions to infer manipulation forces. In: CVPR 2015. pp. 1893–1902. Boston, USA (2015)
Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intell. 1(1), 33–57 (2007)
Qian, C., Sun, X., Wei, Y., Tang, X., Sun, J.: Realtime and robust hand tracking from depth. In: CVPR 2014. pp. 1106–1113. Columbus, USA (2014)
Qian, C., Sun, X., Wei, Y., Tang, X., Sun, J.: Realtime and robust hand tracking from depth. In: CVPR 2014. pp. 1106–1113. Ohio, USA (2014)
Rehg, J.M., Kanade, T.: Visual tracking of high DOF articulated structures: an application to human hand tracking. In: ECCV 1994. pp. 35–46. Springer, London, UK (1994)
Roditakis, K., Argyros, A.: Quantifying the effect of a colored glove in the 3D tracking of a human hand. In: Nalpantidis, L., Krüger, V., Eklundh, J.O., Gasteratos, A. (eds.) Computer Vision Systems. LNCS, vol. 9163, pp. 404–414. Springer, Heidelberg (2015)
Romero, J., Kjellström, H., Ek, C.H., Kragic, D.: Non-parametric hand pose estimation with object context. Image Vis. Comput. 31(8), 555–564 (2013)
Romero, J., Kjellström, H., Kragic, D.: Monocular real-time 3D articulated hand pose estimation. In: IEEE-RAS 2009. pp. 87–92. Paris, France (2009)
Ros, G., del Rincon, J., Mateos, G.: Articulated particle filter for hand tracking. In: ICPR 2012. pp. 3581–3585. Stockholm, Sweden (2012)
Rosales, R., Athitsos, V., Sigal, L., Sclaroff, S.: 3D hand pose reconstruction using specialized mappings. In: ICCV 2001. vol. 1, pp. 378–385. Vancouver, Canada (2001)
Salzmann, M., Urtasun, R.: Physically-based motion models for 3D tracking: a convex formulation. In: ICCV 2011. pp. 2064–2071. Barcelona, Spain (2011)
Schmidt, T., Newcombe, R., Fox, D.: Dart: Dense articulated real-time tracking. In: RSS 2014. vol. 2. Berkeley, USA (2014)
Song, D., Kyriazis, N., Oikonomidis, I., Papazov, C., Argyros, A., Burschka, D., Kragic, D.: Predicting human intention in visual observations of hand/object interactions. In: ICRA 2013. pp. 1608–1615. Karlsruhe, Germany (2013)
Sridhar, S., Oulasvirta, A., Theobalt, C.: Interactive markerless articulated hand motion tracking using RGB and depth data. In: ICCV 2013. pp. 2456–2463. Sydney, Australia (2013)
Sridhar, S., Rhodin, H., Seidel, H.P., Oulasvirta, A., Theobalt, C.: Real-time hand tracking using a sum of anisotropic gaussians model. In: 3DV 2014. Tokyo, Japan (2014)
Stenger, B., Mendonça, P.R., Cipolla, R.: Model-based 3D tracking of an articulated hand. In: CVPR 2001. vol. 2, pp. 310–315. Kauai, HI, USA (2001)
Sudderth, E., Mandel, M., Freeman, W., Willsky, A.: Visual hand tracking using nonparametric belief propagation. In: CVPRW 2004. pp. 189–189. Washington, USA (2004)
Tompson, J., Stein, M., Lecun, Y., Perlin, K.: Real-time continuous pose recovery of human hands using convolutional networks. ACM Trans. Graph. 33(5), 169–169 (2014)
Vo, B., Vo, B., Pham, N., Suter, D.: Joint detection and estimation of multiple objects from image observations. IEEE Trans. Signal Process. 58(10), 5129–5141 (2010)
Wang, R., Paris, S., Popovic, J.: 6D hands: markerless hand-tracking for computer aided design. In: UIST 2011. pp. 549–558. UIST ’11, ACM, New York, USA (2011)
Wang, Y., Min, J., Zhang, J., Liu, Y., Xu, F., Dai, Q., Chai, J.: Video-based hand manipulation capture through composite motion control. ACM Trans. Graph. (TOG) 32(4), 43:1–43:14 (2013)
Wu, Y., Lin, J.Y., Huang, T.S.: Capturing natural hand articulation. In: ICCV 2001. vol. 2, pp. 426–432. Vancouver, USA (2001)
Xu, C., Cheng, L.: Efficient hand pose estimation from a single depth image. In: ICCV 2013. pp. 3456–3462. Sydney, Australia (2013)
Acknowledgments
This work was partially supported by the by the EU ISTFP7-IP-288533 project RoboHow.Cog and by the EU FP7-ICT-2011-9-601165 project WEARHAP.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Kyriazis, N. et al. (2016). A Generative Approach to Tracking Hands and Their Interaction with Objects. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds) Man–Machine Interactions 4. Advances in Intelligent Systems and Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-23437-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-23437-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23436-6
Online ISBN: 978-3-319-23437-3
eBook Packages: EngineeringEngineering (R0)