Skip to main content

Neural Network and Kalman Filter Use for Improvement of Inertial Distance Determination

  • Conference paper
  • First Online:
Man–Machine Interactions 4

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 391))

  • 1045 Accesses

Abstract

Appropriate distance estimation is very important in different applications, e.g. in navigation or developing natural interfaces for man-machine interaction. Article refers to this problem and presents two approaches in improving estimation of the distance. The distance is computed on the base of linear acceleration. The acceleration data is captured by an inertial sensor mounted on moving object. The first approach uses Kalman filter and appropriate preprocessing steps to denoise measured acceleration. This method improves the distance estimation in noticeable manner but is not optimal because of time growing errors. These errors results come from the imperfection of the accelerometer and double integration of acceleration data during computational step. The second approach improves the estimation accuracy by using a neural network. The neural network estimates position of moving object on the base of statistical properties of the acceleration signal. Both of mentioned approaches were compared and the results are described in this article. Theoretical contemplation was confirmed by practical verification which results are also presented. Conducted research show that these two approaches can be combined for an optimal problem solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bebek, O., Suster, M., Rajgopal, S., Fu, M.J., Huang, X., Cavusoglu, M.C., Young, D.J., Mehregany, M., Den Bogert, V., Ton, A.J., et al.: Personal navigation via shoe mounted inertial measurement units. In: IROS 2010. pp. 1052–1058. Taipei, Taiwan (2010)

    Google Scholar 

  2. Bourg, D.M., Seemann, G.: AI for Game Developers. O’Reilly, Sebastopol (2004)

    Google Scholar 

  3. Chang, H., Xue, L., Jiang, C., Kraft, M., Yuan, W.: Combining numerous uncorrelated MEMS gyroscopes for accuracy improvement based on an optimal Kalman filter. IEEE Trans. Instrum. Meas. 61(11), 3084–3093 (2012)

    Article  Google Scholar 

  4. Chiang, K.W., Chang, H.W., Li, C.Y., Huang, Y.W.: An artificial neural network embedded position and orientation determination algorithm for low cost MEMS INS/GPS integrated sensors. Sensors 9(4), 2586–2610 (2009)

    Article  Google Scholar 

  5. Coppin, B.: Artificial Intelligence Illuminated. Jones and Bartlett Publishers, London (2004)

    Google Scholar 

  6. Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice Using Matlab. John Wiley and Sons, New York, Toronto (2001)

    Google Scholar 

  7. Guerrier, S.: Integration of skew-redundant MEMS-IMU with GPS for improved navigation performance. Master’s thesis, Ecole Polytechnique Federale de Lausanne (2008)

    Google Scholar 

  8. Gurney, K.: An Introduction to Neural Networks. UCL Press, London, New York (1997)

    Book  Google Scholar 

  9. Gwak, M., Jo, K., Sunwoo, M.: Neural-network multiple models filter (NMM)-based position estimation system for autonomous vehicle. Int. J. Automot. Technol. Manage. 14(2), 265–274 (2013)

    Article  Google Scholar 

  10. Haykin, S.: Neural Networks–A Comprehensive Foundation. Pearson Education, New Delhi (1999)

    Google Scholar 

  11. Heaton, J.: Programming Neural Networks with Encog 2 in Java. Heaton Research, Chesterfield (2010)

    Google Scholar 

  12. Kaminski, M., Kopniak, P., Zyla, K.: Zdalne sterowanie ramieniem robota z wykorzystaniem inercyjnych czujnikow rejestracji ruchu. Logistyka 6, 5168–5177 (2014)

    Google Scholar 

  13. Kitagawa, M., Windsor, B.: MoCap for Artists. Workflow and Techniques for Motion Capture. Elsevier, Burlington, USA (2008)

    Google Scholar 

  14. Kopniak, P.: Interfejsy programistyczne akcelerometrow dla urzadzen mobilnych typu Smartphone. Pomiary Automatyka Kontrola 12, 1477–1479 (2011)

    Google Scholar 

  15. Kopniak, P.: Budowa, zasada, dzialania i zastosowania systemu rejestracji ruchu firmy xsens. Logistyka 3, 3049–3058 (2014)

    Google Scholar 

  16. Kopniak, P.: Java wrapper for xsens motion capture system sdk. In: HSI 2014, pp. 106–111. Costa da Caparica, Portugal (2014)

    Google Scholar 

  17. Lebel, K., Boissy, P., Hamel, M., Duval, C.: Inertial measures of motion for clinical biomechanics: comparative assessment of accuracy under controlled conditions-effect of velocity. PloS one 8(11), e79945 (2013)

    Article  Google Scholar 

  18. Mehrotra, K., Mohan, K.C., Ranka, S.: Elements of Artificial Neural Networks. A Bradford Book, Cambridge (1996)

    Google Scholar 

  19. Munoz Diaz, E., Heirich, O., Khider, M., Robertson, P.: Optimal sampling frequency and bias error modeling for foot-mounted imus. In: IPIN 2013, pp. 1–9. Montbeliard-Belfort, France (2013)

    Google Scholar 

  20. Nguyen, H.M., Zhou, C.: Improving GPS/INS integration through neural networks. J. Telecommun. 2(2), 1–6 (2010)

    Google Scholar 

  21. Pellegrini, A., Tonino, P., Paladini, P., Cutti, A., Ceccarelli, F., Porcellini, G.: Motion analysis assessment of alterations in the scapulohumeral rhythm after throwing in baseball pitchers. Musculoskelet. Surg. 97(1), 9–13 (2013)

    Article  Google Scholar 

  22. Reinstein, M.: Use of adaptive filtering methods in inertial navigation systems. Ph.D. thesis, Czech Technical University in Prague (2010)

    Google Scholar 

  23. Saadeddin, K., Abdel-Hafez, M.F., Jaradat, M.A., Jarrah, M.A.: Optimization of intelligent approach for low-cost INS/GPS navigation system. J. Intell. Rob. Syst. 73(1–4), 325–348 (2014)

    Article  Google Scholar 

  24. Shi, G.X., Yang, S.X., Su, Z.: Random drift suppression method of MEMS gyro using federated Kalman filter. In: ICACC 2011, pp. 274–277. Harbin, China (2011)

    Google Scholar 

  25. Vorsmann, P., Kaschwich, C., Kruger, T., Schnetter, P., Wilkens, C.S.: MEMS based inte-grated navigation systems for adaptive flight control of unmanned aircraft–state of the art and future developments. Gyroscopy Navig. 3(4), 235–244 (2012)

    Article  Google Scholar 

  26. Welch, G., Bishop, G.: An Introduction to the Kalman Filter. University of North Carolina at Chapel Hill, Department of Computer Science, Los Angeles (2001)

    Google Scholar 

  27. Woodman, J.O.: An Introduction to inertial navigation. Tech. Rep. UCAM-CL-TR-696, University of Cambridge Computer Laboratory (2007)

    Google Scholar 

  28. Xia, L., Wang, J., Yan, G.: RBFNN aided extended Kalman filter for MEMS AHRS/GPS. In: ICESS 2009, pp. 559–564. Zhejiang, China (2009)

    Google Scholar 

  29. Zhou, H., Hu, H.: Human motion tracking for rehabilitation-a survey. Biomed. Signal Process. Control 3(1), 1–18 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Kopniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kopniak, P., Kaminski, M. (2016). Neural Network and Kalman Filter Use for Improvement of Inertial Distance Determination. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds) Man–Machine Interactions 4. Advances in Intelligent Systems and Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-23437-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23437-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23436-6

  • Online ISBN: 978-3-319-23437-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics