Abstract
Appropriate distance estimation is very important in different applications, e.g. in navigation or developing natural interfaces for man-machine interaction. Article refers to this problem and presents two approaches in improving estimation of the distance. The distance is computed on the base of linear acceleration. The acceleration data is captured by an inertial sensor mounted on moving object. The first approach uses Kalman filter and appropriate preprocessing steps to denoise measured acceleration. This method improves the distance estimation in noticeable manner but is not optimal because of time growing errors. These errors results come from the imperfection of the accelerometer and double integration of acceleration data during computational step. The second approach improves the estimation accuracy by using a neural network. The neural network estimates position of moving object on the base of statistical properties of the acceleration signal. Both of mentioned approaches were compared and the results are described in this article. Theoretical contemplation was confirmed by practical verification which results are also presented. Conducted research show that these two approaches can be combined for an optimal problem solution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bebek, O., Suster, M., Rajgopal, S., Fu, M.J., Huang, X., Cavusoglu, M.C., Young, D.J., Mehregany, M., Den Bogert, V., Ton, A.J., et al.: Personal navigation via shoe mounted inertial measurement units. In: IROS 2010. pp. 1052–1058. Taipei, Taiwan (2010)
Bourg, D.M., Seemann, G.: AI for Game Developers. O’Reilly, Sebastopol (2004)
Chang, H., Xue, L., Jiang, C., Kraft, M., Yuan, W.: Combining numerous uncorrelated MEMS gyroscopes for accuracy improvement based on an optimal Kalman filter. IEEE Trans. Instrum. Meas. 61(11), 3084–3093 (2012)
Chiang, K.W., Chang, H.W., Li, C.Y., Huang, Y.W.: An artificial neural network embedded position and orientation determination algorithm for low cost MEMS INS/GPS integrated sensors. Sensors 9(4), 2586–2610 (2009)
Coppin, B.: Artificial Intelligence Illuminated. Jones and Bartlett Publishers, London (2004)
Grewal, M.S., Andrews, A.P.: Kalman Filtering: Theory and Practice Using Matlab. John Wiley and Sons, New York, Toronto (2001)
Guerrier, S.: Integration of skew-redundant MEMS-IMU with GPS for improved navigation performance. Master’s thesis, Ecole Polytechnique Federale de Lausanne (2008)
Gurney, K.: An Introduction to Neural Networks. UCL Press, London, New York (1997)
Gwak, M., Jo, K., Sunwoo, M.: Neural-network multiple models filter (NMM)-based position estimation system for autonomous vehicle. Int. J. Automot. Technol. Manage. 14(2), 265–274 (2013)
Haykin, S.: Neural Networks–A Comprehensive Foundation. Pearson Education, New Delhi (1999)
Heaton, J.: Programming Neural Networks with Encog 2 in Java. Heaton Research, Chesterfield (2010)
Kaminski, M., Kopniak, P., Zyla, K.: Zdalne sterowanie ramieniem robota z wykorzystaniem inercyjnych czujnikow rejestracji ruchu. Logistyka 6, 5168–5177 (2014)
Kitagawa, M., Windsor, B.: MoCap for Artists. Workflow and Techniques for Motion Capture. Elsevier, Burlington, USA (2008)
Kopniak, P.: Interfejsy programistyczne akcelerometrow dla urzadzen mobilnych typu Smartphone. Pomiary Automatyka Kontrola 12, 1477–1479 (2011)
Kopniak, P.: Budowa, zasada, dzialania i zastosowania systemu rejestracji ruchu firmy xsens. Logistyka 3, 3049–3058 (2014)
Kopniak, P.: Java wrapper for xsens motion capture system sdk. In: HSI 2014, pp. 106–111. Costa da Caparica, Portugal (2014)
Lebel, K., Boissy, P., Hamel, M., Duval, C.: Inertial measures of motion for clinical biomechanics: comparative assessment of accuracy under controlled conditions-effect of velocity. PloS one 8(11), e79945 (2013)
Mehrotra, K., Mohan, K.C., Ranka, S.: Elements of Artificial Neural Networks. A Bradford Book, Cambridge (1996)
Munoz Diaz, E., Heirich, O., Khider, M., Robertson, P.: Optimal sampling frequency and bias error modeling for foot-mounted imus. In: IPIN 2013, pp. 1–9. Montbeliard-Belfort, France (2013)
Nguyen, H.M., Zhou, C.: Improving GPS/INS integration through neural networks. J. Telecommun. 2(2), 1–6 (2010)
Pellegrini, A., Tonino, P., Paladini, P., Cutti, A., Ceccarelli, F., Porcellini, G.: Motion analysis assessment of alterations in the scapulohumeral rhythm after throwing in baseball pitchers. Musculoskelet. Surg. 97(1), 9–13 (2013)
Reinstein, M.: Use of adaptive filtering methods in inertial navigation systems. Ph.D. thesis, Czech Technical University in Prague (2010)
Saadeddin, K., Abdel-Hafez, M.F., Jaradat, M.A., Jarrah, M.A.: Optimization of intelligent approach for low-cost INS/GPS navigation system. J. Intell. Rob. Syst. 73(1–4), 325–348 (2014)
Shi, G.X., Yang, S.X., Su, Z.: Random drift suppression method of MEMS gyro using federated Kalman filter. In: ICACC 2011, pp. 274–277. Harbin, China (2011)
Vorsmann, P., Kaschwich, C., Kruger, T., Schnetter, P., Wilkens, C.S.: MEMS based inte-grated navigation systems for adaptive flight control of unmanned aircraft–state of the art and future developments. Gyroscopy Navig. 3(4), 235–244 (2012)
Welch, G., Bishop, G.: An Introduction to the Kalman Filter. University of North Carolina at Chapel Hill, Department of Computer Science, Los Angeles (2001)
Woodman, J.O.: An Introduction to inertial navigation. Tech. Rep. UCAM-CL-TR-696, University of Cambridge Computer Laboratory (2007)
Xia, L., Wang, J., Yan, G.: RBFNN aided extended Kalman filter for MEMS AHRS/GPS. In: ICESS 2009, pp. 559–564. Zhejiang, China (2009)
Zhou, H., Hu, H.: Human motion tracking for rehabilitation-a survey. Biomed. Signal Process. Control 3(1), 1–18 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Kopniak, P., Kaminski, M. (2016). Neural Network and Kalman Filter Use for Improvement of Inertial Distance Determination. In: Gruca, A., Brachman, A., Kozielski, S., Czachórski, T. (eds) Man–Machine Interactions 4. Advances in Intelligent Systems and Computing, vol 391. Springer, Cham. https://doi.org/10.1007/978-3-319-23437-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-23437-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23436-6
Online ISBN: 978-3-319-23437-3
eBook Packages: EngineeringEngineering (R0)