Skip to main content

Optimal and Equilibrium Retrial Rates in Single-Server Multi-orbit Retrial Systems

  • Conference paper
  • First Online:
Multiple Access Communications (MACOM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 9305))

Included in the following conference series:

Abstract

We consider a single-server retrial system with one and several classes of customers. In the case of several classes, each class has its own orbit for retrying customers. The retrials from the orbits are generated with constant retrial rates. In the single class case, we are interested in finding an optimal retrial rate. Whereas in the multi-class case, we use game theoretic framework and find equilibrium retrial rates. Our performance criteria balance the number of retrials per retrying customer with the number of unhappy customers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Artalejo, J.R.: Stationary analysis of the characteristics of the M/M/2 queue with constant repeated attempts. Opsearch 33, 83–95 (1996)

    MathSciNet  MATH  Google Scholar 

  2. Artalejo, J.R., Gómez-Corral, A., Neuts, M.F.: Analysis of multiserver queues with constant retrial rate. European Journal of Operational Research 135, 569–581 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avrachenkov, K., Goricheva, R.S., Morozov, E.V.: Verification of stability region of a retrial queuing system by regenerative method. In: Proceedings of the International Conference “Modern Probabilistic Methods for Analysis and Optimization of Information and Telecommunication Networks”, Minsk, pp. 22–28 (2011)

    Google Scholar 

  4. Avrachenkov, K., Morozov, E.V.: Stability analysis of \(GI/G/c/K\) retrial queue with constant retrial rate. Math. Meth. Oper. Res. 79, 273–291 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Avrachenkov, K., Morozov, E., Nekrasova, R., Steyaert, B.: Stability analysis of retrial systems with constant retrial rates. In: First European Conference on Queueing Theory, ECQT 2014, Booklet of Abstracts, p. 50 (2014)

    Google Scholar 

  6. Avrachenkov, K., Morozov, E., Nekrasova, R., Steyaert, B.: Stability analysis and simulation of N-class retrial system with constant retrial rates and Poisson inputs. Asia-Pacific Journal of Operational Research 31(2), 18 (2014)

    Article  MathSciNet  Google Scholar 

  7. Avrachenkov, K., Nain, P., Yechiali, U.: A retrial system with two input streams and two orbit queues. Queueing Systems 77(1), 1–31 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Avrachenkov, K., Yechiali, U.: Retrial networks with finite buffers and their application to Internet data traffic. Probability in the Engineering and Informational Sciences 22, 519–536 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Avrachenkov, K., Yechiali, U.: On tandem blocking queues with a common retrial queue. Computers and Operations Research 37(7), 1174–1180 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Choi, B.D., Rhee, K.H., Park, K.K.: The M/G/1 retrial queue with retrial rate control policy. Probability in the Engineering and Informational Sciences 7, 29–46 (1993)

    Article  Google Scholar 

  11. Choi, B.D., Shin, Y.W., Ahn, W.C.: Retrial queues with collision arising from unslotted CSMA/CD protocol. Queueing Systems 11, 335–356 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Economou, A., Kanta, S.: Equilibrium customer strategies and social-profit maximization in the single-server constant retrial queue. Naval Research Logistics (NRL) 58(2), 107–122 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Elcan, A.: Optimal customer return rate for an M/M/1 queueing system with retrials. Probability in the Engineering and Informational Sciences 8(4), 5211–7539 (1994)

    Article  Google Scholar 

  14. Elcan, A.: Asymptotic bounds for an optimal state-dependent retrial rate of the M/M/1 queue with returning customers. Mathematical and Computer Modelling 30(31–74), 129–140 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fayolle, G.: A simple telephone exchange with delayed feedback. In: Boxma, O.J., Cohen J.W., Tijms, H.C. (eds.) Teletraffic Analysis and Computer Performance Evaluation, vol. 7, pp. 245–253 (1986)

    Google Scholar 

  16. Hassin, R., Haviv, M.: On optimal and equilibrium retrial rates in a queueing system. Probability in the Engineering and Informational Sciences 10(2), 2231–7227 (1996)

    Article  MathSciNet  Google Scholar 

  17. Hassin, R., Haviv, M.: To queue or not to queue: Equilibrium behavior in queueing systems. Springer (2003)

    Google Scholar 

  18. Kobliakov, V.A., Turlikov, A.M., Vinel, A.V.: Distributed queue random multiple access algorithm for centralized data networks. In: IEEE Tenth International Symposium on Consumer Electronics, ISCE 2006 (2006)

    Google Scholar 

  19. Kulkarni, V.G.: A game theoretic model for two types of customers competing for service. Operations Research Letters 2(3), 1191–7122 (1983)

    Article  Google Scholar 

  20. Lillo, R.E.: A G/M/1-queue with exponential retrial. TOP 4(1), 99–120 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Morozov, E., Nekrasova, R.: Estimation of blocking probability in retrial queuing system with constant retrial rate. In: Proceedings of the Institute of Applied Mathematical Research, Karelian Research Centre RAS, vol. 5, pp. 63–74 (2011). (in Russian)

    Google Scholar 

  22. Zhang, Z., Wang, J., Zhang., F.: Equilibrium Customer Strategies in the Single-Server Constant Retrial Queue with Breakdowns and Repairs. Mathematical Problems in Engineering, 14 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruslana Nekrasova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Avrachenkov, K., Morozov, E., Nekrasova, R. (2015). Optimal and Equilibrium Retrial Rates in Single-Server Multi-orbit Retrial Systems. In: Jonsson, M., Vinel, A., Bellalta, B., Tirkkonen, O. (eds) Multiple Access Communications. MACOM 2015. Lecture Notes in Computer Science(), vol 9305. Springer, Cham. https://doi.org/10.1007/978-3-319-23440-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23440-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23439-7

  • Online ISBN: 978-3-319-23440-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics