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Abstract. Most hypothesis testing in machine learning is done using the
frequentist null-hypothesis significance test, which has severe drawbacks.
We review recent Bayesian tests which overcome the drawbacks of the
frequentist ones.

Keywords: Bayesian hypothesis testing - Null hypothesis significance
testing

1 Introduction

Hypothesis testing in machine learning (for instance to establish whether the
performance of two algorithms is significantly different) is usually performed
using frequentist tests.

The highly-cited tutorial by [1] makes some important points. It recommends
non-parametric rather than parametric tests for comparing multiple classifiers
on multiple data sets. The advantages of the non-parametric approach are that
they do not average measures taken on different data sets; they do not assume
normality; they are robust to outliers. In particular, [1] recommends the signed-
rank test for the pairwise comparison of two classifier over multiple data sets and
the Friedman test for the comparison of multiple classifiers over multiple data
sets. Modern procedures for the multiple comparisons are discussed in [1,2]. They
control the family-wise error rate (FWER) while providing more power than the
traditional Bonferroni correction. Both [1,2] assume the post-hoc analysis of
the Friedman test to be based on the mean-ranks test. When comparing two
algorithms A and B, the statistic of the mean-ranks test is proportional to the
difference between the average rank of A and B, R4 — Rp. In a recent note [3],
we recommend instead to avoid the mean-ranks test, as both R4 and Rz depend
on the performance of the other algorithms included in the original experiment.
This can make the results non-repeatable. For instance the difference between
A and B could turn out to be significant if the pool comprises algorithms C,
D, E and not significant if the pool comprises algorithms F, G, H. We instead
recommend using the sign-test or the Wilcoxon signed-rank test, whose outcome
only depends on the performance of A and B.
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However such tests are based on the frequentist framework of the null-
hypothesis significance tests (NHST). The NHST controls the Type I error,
namely the probability of rejecting the null hypothesis when it is true. When
multiple comparisons are performed, the NHST approach prescribes to control
the family-wise error rate, namely the probability of finding at least one Type I
error among the null hypotheses which are rejected. Yet null hypothesis signifi-
cance testing has severe drawbacks.

Consider analyzing a data set of n observations with a NHST test. The sam-
pling distribution used to determine the critical value of the test assumes that
your intention was to collect exactly n observations. If your intention was differ-
ent (for instance in machine learning you typically compare two algorithms on
all the data sets that are available) the sampling distribution should be changed
to reflect your actual sampling intentions [4]. This is never done, given the dif-
ficulty of formalizing one’s intention and of devising an appropriate sampling
distribution. This problem is thus important but generally ignored.

NHST can reject the null hypothesis or fail to reject it, but it cannot verify the
null hypothesis. In other words, it does not provide any measure of evidence for
the null hypothesis. Within the NHST framework accepting the null hypothesis
is a weak decision: it does not mean that the null hypothesis is true.

NHST decisions are taken on the basis of the chosen significance «, namely
the probability of rejecting the null hypothesis when it is true. Usually one sets
«=0.01 or 0.05, without having the possibility of a sound trade-off between Type
I and Type II errors.

Bayesian hypothesis tests overcome these issues. The computation does not
depend on the intention of the person who collected the data. The Bayesian test
returns the posterior probability of the null and the alternative hypotheses. This
allows to take decision which minimize the posterior expected value of the loss
(posterior risk). For instance [5] reviews how to obtain Bayes-optimal decisions
for a variety of different loss functions.

In [6] we proposed a Bayesian counterpart of the signed-rank test, which
is the recommended test for comparing the score of two classifiers on multiple
data sets. To devise this non-parametric test we adopted the Dirichlet process,
which is often used in Bayesian non-parametrics. By means of simulations on
artificial and real world data, we use our test to decide if a certain classifier is
significantly better than another. The Bayesian and the frequentist signed-rank
(a=0.05) take the same decisions only when we assume the Type I error to be 19
times more costly than the Type II error. In this case, the optimal decision is to
declare that classifier Y is better than classifier X when the posterior probability
of this hypothesis is greater than 1 —a = 0.95. For any other different cost setting
the frequentist test is tied to control the Type I error, fixing o = 0.05. Instead
the Bayesian decision rule allows to minimize the posterior risk. The rule for
optimal decisions (accepting or rejecting the null hypothesis) is equivalent to
that of cost-sensitive classification [7]. For any other setting of the costs, the
Bayesian test incurs lower costs than the frequentist test.
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Assume now that the two classifiers have been assessed via cross-validation
on a collection of data sets D = {Di,Ds,...,D4}. One has to decide if the
difference of accuracy between the two classifiers on the multiple data sets of D
is significant. The signed-rank test both in its frequentist and Bayesian variant
considers only the mean difference of accuracy measured on each data set, ignor-
ing the associated uncertainty of the cross-validation estimates obtained on each
data set.

In [8] we propose a test which performs inference on multiple data sets
accounting for the correlation and the uncertainty of the estimates yielded by
cross-validation on each data set. Our solution is based on two steps. First we
develop a Bayesian counterpart of the correlated frequentist ¢-test [9], which is
the standard test for analyzing cross-validation results. Under a specific match-
ing prior the inferences of the Bayesian correlated t-test and of the frequentist
correlated t-test are numerically equivalent. The meaning of the inferences is
however different. The inference of the frequentist test is a p-value; the inference
of the Bayesian test is a posterior probability. The posterior probabilities com-
puted on the individual data sets can be combined to make further Bayesian
inference on multiple data sets.

After having computed the posterior probabilities on each individual data
set through the correlated Bayesian t-test, we merge them to make inference on
D. We model each data set as a Bernoulli trial (borrowing the intuition of [10]),
whose possible outcomes are the win of the first or the second classifier. The
probability of success of the Bernoulli trial corresponds to the posterior proba-
bility computed by the Bayesian correlated ¢-test on that data set. The number
of data sets on which the first classifier is more accurate than the second is a
random variable which follows a Poisson-binomial distribution. We use this dis-
tribution to make inference about the difference of accuracy of the two classifiers
on D. We are unaware of other approaches able to compare cross-validated clas-
sifiers on multiple data sets, accounting for the correlation and the uncertainty
of the cross-validation estimates.

When comparing multiple classifiers, the recommended frequentist approach
is the Friedman test. If it rejects the null hypothesis, one runs a procedure for
multiple comparisons. A problem also of the modern procedures for multiple
comparisons [1,2] is that they simplistically treat the multiple comparisons as
independent from each other. But when comparing algorithms {a, b, ¢}, the out-
come of the comparisons (a,b), (a,c), (b,c) are not independent.

In [11] we devised a Bayesian non-parametric procedure for comparing multi-
ple classifiers. Adopting again the Dirichlet process (DP) [12] as a model for the
prior, we first devised a Bayesian Friedman test. Then we designed a joint proce-
dure for the analysis of the multiple comparisons which accounts for their depen-
dencies. We analyze the posterior probability computed through the Dirichlet
process, identifying statements of joint comparisons which have high posterior
probability. The proposed procedure is a compromise between controlling the
FWER and performing no correction of the significance level for the multiple
comparisons. Our Bayesian procedure produces more Type I errors but fewer
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Type II errors than procedures which control the family-wise error. In fact, it
does not aim at controlling the family-wise error. We show the effectiveness of
this approach in a simulation of sequential model selection among a large number
of candidates (racing). Our procedure yields superior results compared to the
traditional frequentist procedure thanks to both ability to manage dependencies
among the multiple comparisons and to recognize equivalent models, narrowing
down the pool of competing models. To recognize that the models have equiva-
lent performance corresponds to verify the null hypothesis, which is impossible
within NHST.

2 Software

The software for all our methods is available from http://ipg.idsia.ch/software/.
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