
© Springer International Publishing Switzerland 2015
A. Bifet et al. (Eds.): ECML PKDD 2015, Part III, LNAI 9286, pp. 53–67, 2015.
DOI: DOI: 10.1007/978-3-319-23461-8_4

Early Detection of Fraud Storms in the Cloud

Hani Neuvirth1(), Yehuda Finkelstein1, Amit Hilbuch1, Shai Nahum1,
Daniel Alon1, and Elad Yom-Tov2

1 Azure Cyber-Security Group, Microsoft, Herzelia, Israel
{haneuvir,t-yehudf,amithi,snahum,dalon}@microsoft.com

2 Microsoft Research, Herzelia, Israel
eladyt@microsoft.com

Abstract. Cloud computing resources are sometimes hijacked for fraudulent
use. While some fraudulent use manifests as a small-scale resource consump-
tion, a more serious type of fraud is that of fraud storms, which are events of
large-scale fraudulent use. These events begin when fraudulent users discover
new vulnerabilities in the sign up process, which they then exploit in mass. The
ability to perform early detection of these storms is a critical component of any
cloud-based public computing system.

In this work we analyze telemetry data from Microsoft Azure to detect fraud
storms and raise early alerts on sudden increases in fraudulent use. The use of
machine learning approaches to identify such anomalous events involves two
inherent challenges: the scarcity of these events, and at the same time, the high
frequency of anomalous events in cloud systems.

We compare the performance of a supervised approach to the one achieved
by an unsupervised, multivariate anomaly detection framework. We further
evaluate the system performance taking into account practical considerations of
robustness in the presence of missing values, and minimization of the model’s
data collection period.

This paper describes the system, as well as the underlying machine learning
algorithms applied. A beta version of the system is deployed and used to conti-
nuously control fraud levels in Azure.

1 Introduction

The adoption of the public cloud as an agile model for computational resources con-
sumption is continuously increasing. The high scalability of these services offer many
opportunities, as well as new challenges. Examples include failure detection [1, 2],
resources optimization [3–5], and security [6, 7]. However, a common challenge to all
is the efficient and effective analysis of large quantities of data that is continuously
accumulated by such cloud platforms.

A significant portion of the data collected at the cloud is in the form of time series
data, e.g., signals from the monitoring of continuous resource use. Therefore, machine
learning algorithms performing time series analysis and forecasting are commonly ap-
plied. Numerous algorithms have been developed for this purpose over the years [8]. The
most established ones are auto-regressive models, integrated models and moving average

54 H. Neuvirth et al.

models, modeling the signal value at a certain time-point using linear dependencies on
preceding data points. Various extensions to these algorithm for multivariate analysis
where the underlying entity is a vector of co-evolving signals also exist [9].

A common analysis setting of these time series in the cloud is anomaly detection
[10]. Wang et al. developed EbAT, an entropy based anomaly testing for detecting
anomalies in cloud utilization patterns [11]. In a more recent paper they describe a
lightweight online algorithm for this task based on the Tukey and Relative Entropy
statistics [12]. Dean et al. created the Unsupervised Behavior Learning (UBL) algo-
rithm which leverages self-organizing maps to detect performance anomalies [13].
Vallis et al. focused on long-term anomaly detection analyzing data from twitter [14].

With the cloud environment being noisy and dynamic, short periods when reliable
data is only partially available often occur. Therefore, in order to be applicable in
practice, the algorithms must be able to operate in the presence of missing values. For
univariate time series, linear and spline interpolation methods are a common approach
[15]. An advanced approach is provided by the DynaMMo algorithm, which aims to
enhance the information from the correlations among multiple dimensions, through
modeling co-evolving time series through the use of latent variables [15]. Wellenzohn
et al suggest a method imputing the missing values from the k most similar patterns in
historical data [16]. Xie et al. developed the MOUSSE algorithm which is based on
submanifold approximation, which can handle some amount of missing data, and
demonstrated it on theft detection and solar flare detection on video streams [17].

Among the many challenges in the cloud, of primary importance is ongoing servic-
es availability. In parallel to the genuine users, these services attract fraudsters trying
to utilize the resources afforded for more nefarious means. In order to avoid decreases
in service quality due to fraudulent activity, cloud providers have to either maintain
excessive resources or detect, as soon as possible, consumption by fraudsters and take
relevant action.

Here we address the early detection of significant peaks in fraudulent activity in
cloud systems, which we term “fraud storms” (FS). In order to avoid a reduction in
the quality of service (QoS) as a result of this kind of indirect attacks [18], the service
provider has to maintain large amount of excessive resources, which has significant
cost implications. We examine two different possible approaches for the problem – a
supervised approach aiming to predict the continuous fraud levels, and an unsuper-
vised approach searching for anomalies in multivariate capacity related signals. The
requirement for prompt detection poses a constraint on the resolution of data available
for the analysis, which is collected at a datacenter level, as opposed to subscription
level data, which is too big to collect within the required time constraints.

2 Methods

2.1 The Problem Setting

Microsoft Azure is one of the largest public-cloud platforms available, spanning sev-
eral large data centers around the world. The size of each data center varies depending
on local needs, economic considerations, etc. From a fraud protection perspective, this
means that the effect of fraud peaks on a certain data center depends on its size.

 Early Detection of Fraud Storms in the Cloud 55

In addition, Azure has a wide variety of offer types through which users can sub-
scribe to the system. For example, free trial accounts that offer limited resources to
new subscribers, and Pay-as-you-go offers allowing users to pay at the end of the
billing period for specific resources consumed during this time. Each of these offer
types requires a different verification process on registration to the system, designed
to address the associated fraud risk.

The final true labeling of a certain subscription as fraudulent is based on post-usage
information, for example, through information that certain credit cards were reported
stolen. These labels necessarily arrive much later than the fraudulent use, typically in
the order of a month. However, if a specific subscription is suspected to be fraudulent,
the cloud operator has the ability to manually investigate the user further, and if found to
be fraudulent, the subscription is closed. In the case where a group of fraudulent sub-
scriptions is identified, a bulk shutdown process can be employed.

The type of resources consumed by fraudsters highly depends on the specific fraud
type. Bitcoin mining would usually require high compute resources, while spamming
and click-frauds might have a greater effect on the bandwidth use.

To achieve a high-resolution control over fraud storms, supplying adequate reliability
for the different data center regions and offer types, similar offer types have been
grouped together by a domain expert, and the analysis is performed independently
for each pair of region and offer group, which we term here a sample-set. Effectively,
in the available data there is some correlation between FS events on different regions,
however, in this study, the analysis of each sample-set is independent of the others.

2.2 The Labels

The objective of this work is to detect fraudulent peaks affecting compute resources.
To obtain FS labels, the ongoing number of fraudulent cores in use was extracted, and
a domain expert used this information to assign labels to hourly data on an eight
months period, spanning from January 6 to September 10. Note that this procedure
was performed on past events, once the full information about fraud was available.
The labels indicate the start date of the FS event, the date of the first bulk-shutdown
of fraudulent subscriptions employed to discard the fraudulent accounts, and the date
in which the fraudulent cores consumption returned to its limited regular level.

2.3 The Analyzed Signals

We use two signals sampled at hourly intervals in this version of the FS detection
component: average of the total number of cores used in the past hour in a region and
offer group, and the total number of new subscriptions belonging to a certain offer
group. These signals are extracted at the level of the datacenter, and thus available at a
short latency. Here we use data gathered between January 6 and September 10, 2014.
Some of the regions and offer groups became operational only later within this period,
and thus their analysis sequence is shorter. Note that the breakdown of the new sub-
scriptions signal to the different regions is not available, and thus the exact same sig-
nal is shared across all regions. The design of the algorithms is such that new signals
can be easily added.

56 H. Neuvirth et al.

2.4 Learning Approaches

Two very different learning approaches can be utilized for this problem. One is a two-
layer supervised approach, analogous to the labeling process, where the first layer
predicts the continuous signal of the number of fraudulent cores that was used to de-
rive the classification, and the second layer uses a classification algorithm over this
signal, to predict the binary FS labeling. An alternative approach follows the observa-
tion that each FS is an outlier of the system and hence applies an anomaly detection
approach.

The Supervised Analysis Approach
This analysis includes two independent layers: using regression to predict the number
of fraudulent cores (FC) at each time-point from the available new-subscriptions and
total-core-usage signals, followed by a classification of this prediction to retrieve the
binary FS prediction.

The input to the present version of the system are two signals, sampled hourly: the
number of cores in use, and the total number of new subscriptions created for this
offer group. The number of cores at each region and offer group was first processed to
define their analysis starting point, discarding data with no sufficient variation, by
requiring a minimum standard deviation of 3 on a 7-days window. This is due to the
fact that data starts to flow from the data centers and offer types already at their test-
ing phase, before they actually become operational.

The regression analysis in the first layer was performed independently for each
sample-set (region and offer group). The features used include the values at the past
1,2,4 and 8 hours, 1, 2, 4, 7 and 14 days, and averages of the signal in windows of 2,
4, 8, 12, 24 and 48 hours, as well as their polynomial products of degree 2. These
features were first filtered based on low variance (<10-10). Then, they were further
filtered using a false discovery rate (FDR) procedure on the p-values obtained from
the correlation coefficient of each feature with the outcome setting alpha=0.05. Fi-
nally, they were standardized, and fed into a ridge regression model counting over
ridge values ranging from 1 to 1012 at a logarithmic scale. Model selection was per-
formed using generalized cross validation with the python scikit-learn package.

In the training phase, the regression, predicting the number of fraudulent cores is
performed in 5-fold cross-validation in order to obtain signal with the noise resulting
from the prediction model. Another regression model is trained on the full training
data to be used on the test set. Three features were extracted from this noisy signal for
each time-point t, relative to the preceding time point (t-1): their difference
(diff=FC(t)-FC(t-1)), their relative difference (diff/mean(FC)), and their ratio
(FC(t)/FC(t-1). These features coming from all the sample-sets are then fed into a
logistic regression model to train the classification. For the labeling of the classifica-
tion layer, two schemes were explored: a strict labeling considering only the time
period until the bulk shutdown as FS, named “bulk shutdown” (see section 2.2), and a
looser definition representing the whole FS period as positive.

 Early Detection of Fraud Storms in the Cloud 57

The Outlier Detection Approach
The outlier detection algorithm processes the time series of the same selected signals.
It is composed of two parts: prediction of the value at the next time point, and evalua-
tion of the error. Our signals show typical seasonality patterns (An example is shown
in Figure 6), and thus, an analysis similar to the one employed by Bay et al. was used
[19]. Specifically, we utilized a sliding window approach, in which the values of both
signals in a recent time window are used to predict the value of each signal at the next
timepoint. The selected features include the values at the past 1,2,4, and 8 hours, 1, 2,
4, 7 and 14 days, and averages of the signal in windows of 2, 4, 8, 12, 24 and 48
hours.

Several regression models have been explored for the prediction, including random
forest regression, k-nearest neighbors and SVM with polynomial and RBF kernels,
however all gave a similar performance to the one obtained by a ridge regression
model, thus, this simpler model was selected. The ridge in this model was selected
using cross validation over a log-scale set of values between 1 and 1012.

In the training phase, prediction was performed using a sliding window starting
from a 60 days history, and in gaps of 30 days. The history length used for training
each window was set to a minimum of 60 days, and a maximum of 100 days, in order
to have data that is both sizable and relevant. For each window, we used linear regres-
sion on the features listed above to predict the value at the next time-point in 5-fold
cross validation (CV). One additional training is performed on the full data window.

The CV data was used to estimate the error distribution. A multivariate Gaussian
distribution is assumed, and the mean vector and covariance matrix are calculated
using a robust estimation procedure available in the python scikit-learn package [20].
These are then used to calculate a p-value for each time-point. There exist two possi-
ble definitions for the p-value of the multivariate normal distribution (MVN). The
first is analogous to the one-dimensional counterpart, and is based on the Mahalanobis
distance [21]. The second considers the distribution in a vectorized manner, and esti-
mates the weight of the cumulative distribution function in a rectangle of values high-
er than the observed values [22]. The latter demonstrated better performance (data not
shown). This observations is aligned with the fact that FS by definition refers to ano-
malies at the higher cores and subscription values, and thus this p-value estimation
method was selected. The p-value bound was optimized by counting over a few se-
lected values.

There are two sources for randomization in this approach: in the sampling of the
CV partition, and in the robust covariance estimation [20]. All the experiments were
repeated three times, with different seeds, to estimate the associated standard devia-
tion. Unless indicated otherwise, the standard deviations of all the points in the figures
in this paper fell below 1%.

2.5 Performance Evaluation

To compare the binary predictions with the true labels, all time-points identified as a
FS that are less than 36 hours apart were clustered. Following, each cluster was
mapped to the earliest overlapping FS, if any.

58 H. Neuvirth et al.

Two measures of interest were calculated over these clusters in order to compare
the models: the number of FS events detected, and the median time to detect in hours,
which is the difference between the start time of the predicted cluster to the start time
of the FS label. This measure may take negative values in case the predicted cluster
starts before the manually labeled FS start date.

In addition, we calculated FPDays, the fraction of days in which a false FS alert
was raised for the sample-set, and a summary measure indicating the fraction of sam-
ple-sets having FPDays < 0.05. Note, that high values of this measure correspond to
low FP rates. Naturally, the aim is to maximize the number of FS events detected and
the fraction of sample-sets having a low FP rate, while minimizing the detection time.

3 Results

This section begins with comparing the different analysis approaches, showing that in
our setting the anomaly detection approach is superior to the supervised analysis.
Then, we compare the performance of our algorithm, named FraudStormML, with the
Seasonal Hybrid ESD algorithm, a state of the art anomaly detection algorithm [14].
Further, we address two key challenges that stem from the practical nature of the
problem: making the analysis robust to missing and corrupted data, and enabling fast
utilization of the system on newly available sample-sets.

3.1 Analysis Approaches Comparison

Two main analysis approaches have been explored in this study. The input to both is
the two hourly signals providing the core usage and count of new subscriptions per
region and offer group. Recall that the signal used to derive the manual labels is the
number of fraudulent cores. The first approach performs supervised analysis to pre-
dict the number of fraudulent cores. Following, a binary classification stage is used to
map the continuous prediction to the binary FS label. The second approach performs
multivariate anomaly detection on the two input signals.

In the initial analysis using the supervised approach, no FS has been detected. To
further investigate this, we explored the errors of each of the layers independently.
Figure 1 shows the performance of the classification layer that is based on the true
number of fraudulent cores that was used for the manual labeling (gray line with cir-
cle markers). These are extremely good results, with a false-positive rate lower than
5% in nearly all sample sets while providing full detection of all FSs. This implies
that despite the scarcity of the labels, the logistic regression model can easily capture
the manual labeling process, and the failure is related to the regression layer or to the
combination of the two layers. Note that these results were obtained only with the
“bulk shutdown” classification labeling scheme. When the full FS duration was
labeled as positive, no FS has been detected. This can be ascribed to the use of a
linear model for the classification, however, the overall good performance suggests
that the steep rise in the number of fraudulent cores was the main factor in the manual
classification.

 Early Detection of Fraud Storms in the Cloud 59

Fig. 1. Performance comparison of the fraud storm detection approaches

Investigating the error of the regression layer, we observed good prediction power in
general, but high RMSE values specifically in regions where a FS occurred (Figure 2,
Pearson correlation coefficient=0.53, p-value=4e-4). This suggests that the number of
fraudulent cores cannot be easily modeled in our context, since the behavior during FS
is significantly different from normal, and thus an anomaly detection scheme would be
more appropriate.

Fig. 2. (a) The distribution of FS over regions and offer groups. (b) The RMSE obtained on the
regression analysis for each region and offer group. A green-to-red color scale is used to
represent the values ranges depicted in the boxes. The correlation between the figures is evident
(Pearson correlation coefficient=0.53, p-value=4e-4), proving the regression model fails on FS
events, which suggests that an anomaly detection approach might be more suitable. The data for
regions 4 and 10 was not available early enough for them to qualify for this analysis.

Turning to the anomaly detection approach, we compare our algorithm, named
FraudStormML, to the Seasonal Hybrid ESD (S-H-ESD) algorithm, a state of the art
algorithm recently published for anomaly detection in the cloud, specifically designed
for time-series data [14]. This algorithm is similar to the one we employed in that
both algorithms account for the daily and weekly seasonality in the data. It differs
from our algorithm in the specific statistical analysis applied, utilizing the generalized
Extreme Studentized Deviate test, and by the fact that the analysis is a univariate one.

60 H. Neuvirth et al.

To apply this algorithm to our data, we ran the code provided by the authors of this
algorithm on each of our signals independently, and combined the outputs using two
functions: the “OR” function classifies a time point as FS if an anomaly has been
detected in any of the signals, while the more strict “AND” function only classifies as
FS the time points in which both signals indicated an anomaly. The parameter con-
trolling for the maximum fraction of anomalies was used with values of 0.1, 0.2 and
0.3, and the sensitivity bound alpha received values of 0.05, 0.1, 0.2 and 0.3, when
this value was lower than the corresponding maximum anomaly fraction allowed. All
the remaining parameters were assigned their default values.

Figure 1a compares the results of FraudStormML to the various runs of the S-H-
ESD algorithm. One can observe that the detection rate of the FraudStormML algo-
rithm is higher at the same FP rates (Figure 1a), and the median time-to-detect is low-
er (Figure 1b).

3.2 Handling Missing and Corrupted Data

With the cloud environment being a highly dynamic one, it is not uncommon for data
to become temporarily corrupted or unavailable. From our experience, those vulnera-
ble times are often associated with fraud storms. Hence, allowing a fast recovery of
the system from such events is highly important. Furthermore, when training an ano-
maly detection model, it would be wise to discard past FS events, as these may reduce
the sensitivity of the model. Therefore, an important aspect of a FS detection system
is its ability to be trained and applied in the presence of missing data.

Fig. 3. Performance comparison of the anomaly detection in the presence of missing values

In this analysis we assume a broad missing data model in which the cores-usage
data is missing for a period of one week where the same hour at the previous week is
the most recent time-point that is available. For the simplicity of this analysis, the
features calculating past averages were completely dropped for this signal. The mis-
singness pattern was applied at the feature extraction stage for all the data points in
the sample set, and the prediction performance was evaluated.

Figure 3 presents a comparison of five different models: a fully observed model
(excluding the averaging features), a model with the most recent week missing, a
model where the most recent week except the preceding hour is missing, a model that

 Early Detection of Fraud Storms in the Cloud 61

is based only on the preceding hour, and a model deriving all the features from a li-
near interpolation between the value at the preceding week and the value at the pre-
ceding hour. We can observe that dropping the recent week has a significant effect of
about 10% on the FP rate, and a similar effect on the fraction of FS detected. The
effect is somewhat reduced in the model which adds in the preceding hour (1h) fea-
ture, simulating the case when the information on the recent hour has been accumu-
lated, however, not to a significant level. Dropping the longer history features, and
counting on the 1h feature alone provides similar performance, yet also a noisier one.
In contrast, the linear interpolation model manages to recover the performance to a
level very similar to the fully observed model.

3.3 The Effect of the Data Accumulation Period Length

As the cloud keeps evolving, new offer groups are created from time to time. There-
fore, it is important to be able to estimate the minimal time required for the system to
become effective. Note, that as a measure for the system performance on new offer
types, this is merely an approximation, since new offer types might have different
behavior from the longstanding offers for which we have data.

Fig. 4. The performance achieved as a function of the data accumulation period.

The length of the data accumulation period is a sum of two parameters in our mod-
el: the longest shift used to derive features, and the amount of data required for train-
ing. Figure 4a presents the effect of reducing the extent of the features used. It plots
the detection achieved for different feature shifts ranging over values in [2, 4, 8, 16,

62 H. Neuvirth et al.

24, 48, 72, 96, 120, 144, 168, 240, 336] hours, where in each experiment a single shift
was added to all the smaller ones. All dots connected with a line are the results of the
same model configuration, with different p-value thresholds ranging from 10-5 to 10-

15. The experiments for this plot were performed with full training data as was finally
used by the FraudStormML system, requiring a minimum of 60 days and at most 100
days. As before, each dot is the mean of three experiments with different randomiza-
tion seeds. Figure 4a presents a significant decrease in the sensitivity of the model
below 48 hours. Then, the detection rate is stabilized. For feature shifts of 1–2 weeks
there is some improvement in the noise of the model, making it less sensitive to the
p-value threshold. The FP rates are stable for all values, which might be related to the
large training set used (Figure 4b).

We evaluate the performance of the model given different history lengths of data
used for training. Figures 4b, 4c show the performance as a function of the history
length, ranging between 1 to 100 days, with the sliding window gaps set to the history
length in case it is smaller than 30, and 30 days otherwise (as in the final model).
Experiments have been repeated with three different seeds. The standard deviation was
lower or equal to 1% for FP, and lower or equal to 4% for the fraction of FSs detected.
Figure 4c shows initial good performance, which is misleading, because, as Figure 4d
shows, it is associated with very high FP rates (low fraction of the sample-sets having
FP rate < 5%). Then, as the sensitivity of the model increases, the FP rates on (d)
decrease, and so does the detection rate on (c). Finally, when sufficient training data is
accumulated, the results on both measures reach the desired performance. The results
imply that the model can achieve similar performance with feature shift of 1 week, and
training history of 60 days. Shorter periods will result in some performance degradation.

4 The System

The algorithm described here is a component of a bigger system controlling the ongo-
ing fraud levels in Azure. This system is based on a map-reduce architecture collect-
ing telemetry data from the cloud around the world, analyzing the high-resolution,
subscription-level data. It is based on a large collection of signals, and thus suffers
from delays in data latency. The FraudStormML component described here aims to
control the fraud at the data center level, and to be thinner in the aspect of signals, in
order to significantly reduce the time-to-detect on significant fraud peaks.

The FraudStormML component, is backed-up by a rule-based analysis component.
This component is important to support for possible failures of the system, which
might result from failures in data collection, for example in mapping of new subscrip-
tions to their offer types, etc. On top of this system, we employ the more sensitive
machine learning component. This component scans the main data centers and offer
groups on an hourly basis, and feeds the resulting evaluation into a database. A Power
BI dashboard reads from this database and provides an overview of the fraud storm
state of the system. A snapshot of this system is presented in Figure 5. A detailed
figure for each of the regions and offer groups suspected to be affected by a FS is also
produced, to allow a deeper manual investigation. The model for this component is
trained weekly. Time periods where data was corrupted or missing are being manually
fed into a database, and are interpolated during training.

 Early Detection of Fraud Storms in the Cloud 63

Fig. 5. A snapshot of the FraudStormML component dashboard.

5 Discussion

This paper presents a machine leaning based fraud storm detection system. We ex-
amined the performance of a supervised approach, and compared it to an unsuper-
vised anomaly detection approach. Selecting between the two approaches a-priori is
not straight forward, as each of them has its advantages. On one hand, the cloud envi-
ronment is a very noisy one supplying many outliers that are not necessarily FS
events. On the other hand, a supervised approach is challenging due the scarcity of FS
events. Moreover, we observed that the regression prediction accuracy is especially
low at regions where FS occurred, as they are outliers of the model. The supervised
approach might gain from use of more sophisticated, non-linear models. However, in
a big data system designed to continuously monitor the cloud, the advantage of light-
weight models is evident. With an underlying such model, the anomaly detection
approach performed significantly better than the supervised alternative.

There are many sources for false positive detections in this system. First is the use of
manual labeling, which is a common practice in many machine learning domains, albeit a
noisy one. Figure 6 presents a few examples for FP detections. All the panels on Figure 6
share the same x-axis, indicating the timeline. The first (top) panel shows the core-usage
signal, the second panel shows the new subscriptions signal, the third panel plots the p-
values obtained by the FraudStormML system, with red bars indicating a detection. The
panel on the bottom is the continuous signal used for labeling, i.e. the number of fraudu-
lent cores. The purple background indicates regions that were manually labeled as a FS.

64 H. Neuvirth et al.

Fig. 6. The input and output signals of the system for one of the sample sets. All the panels
share the same x-axis indicating the timeline. The two top panels present the values of the ana-
lyzed signals (cores and new subscriptions). In these panels, the green curve presents the ob-
served values, while the black curve represents FraudStormML’s predicted values. The third
panel presents the –log10(p-value) of the prediction obtained by the FraudStormML component,
with red bars indicating a detection. The bottom panel presents the continuous label, namely,
number of fraudulent cores in use. The time window that was manually labeled as a FS is de-
picted in purple background at the top three panels. There appear to be a few anomalies that are
FP detections of FS. The FP anomaly marked with the circle is also apparent at the continuous
label panel at the bottom, thus representing a limited but true event.

For this region and offer group we observe a single FS event labeled. This event
was successfully detected. However, there are a few other anomalies detected by the
system. The one designated by the red circle demonstrates one FP detection. Even
though this event was not manually labeled as a FS, the corresponding small anomaly
in the number of fraudulent cores used (bottom panel) is evident.

Other anomalies detected are true anomalies that are not FS. In practice, the informa-
tion about their cause is not always available on past data. Since the system became
operational, we encountered several such events resulting from normal but rare events
such as switching the default region of the system. Each event leads to a manual inves-
tigation, which would eventually allow us to identify more relevant signals that could be
added to the system in order to reduce the FP rate. Another way to reduce FP rate is to
use information coming from different regions, as FSs often affect more than one re-

 Early Detection of Fraud Storms in the Cloud 65

gion, however, we observed that the migration of a FS between regions is slow, and
utilizing this comes at the expense of the detection time of the system.

Fig. 7. A qualitative comparison of the distributions of the number of cores used typically, and
during a specific fraud storm event on one of the data centers. Typical users aim to minimize
their costs, and thus they mostly utilize the minimal required compute power, while fraudsters
in this case aimed to maximize their utilization of the system, resulting in a peak at the high
cores during a fraud storm.

Modeling fraud is a challenging task as fraudsters constantly keep learning the detec-
tion systems, and searching for new ways to bypass them. Features that distinguish be-
tween fraudulent and genuine activity can be divided to two types: those monitoring the
resource consumption, and those monitoring the fraudsters’ breaking-in method. While
both are valuable, the latter is not necessarily steady and could very easily change. Con-
versely, the fraudsters’ resources utilization is steadier, usually changing only with the
specific fraud purpose, and thus basing a system on these features, as in our analysis,
would result in a system with a longer life expectancy. Figure 7 presents an example for
such feature, by comparing the typical distribution of the core usage per subscription to
the one observed during a FS in one of the data centers. While the genuine user aims to
minimize their cost though minimizing the resources consumption, a fraudster that ma-
naged to break into the system usually aims to maximize its utilization as much as poss-
ible. Therefore, on the right panel we observe a large peak at the high cores consump-
tion during a FS. This information can be modeled into our system through a few possi-
ble features: the total cores consumption (as present in the above analysis), the mean
core consumption per subscription, with the high values truncated to reduce the noise,
and the entropy of the cores-per-subscription histogram. Note that the entropy feature
has the unsteadiness disadvantage described above. In our analysis, both alternatives did
not improve the prediction over the total number of cores.

Ongoing improvement of the systems is an important aspect of future research. The
FraudStormML algorithm can be easily enhanced with new signals, like bandwidth
and disk usage. This is important, since the typical fraudster’s motivation is dynamic

66 H. Neuvirth et al.

and changes over time, which affects the type of resources they consume. In the
course of system operation, some anomalies will be detected, those that would turn
out to be FP can provide new insights that would further be integrated into the system.
Having a design which supports this evolutionary process is a fundamental challenge
in this field, and a key aspect of the system.

References

1. Bhaduri, K., Das, K., Matthews, B.L.: Detecting abnormal machine characteristics in cloud
infrastructures. In: 2011 IEEE 11th International Conference on Data Mining Workshops
(ICDMW), pp. 137–144. IEEE (2011)

2. Zhu, Q., Tung, T., Xie, Q.: Automatic fault diagnosis in cloud infrastructure. In: 2013
IEEE 5th International Conference on Cloud Computing Technology and Science (Cloud-
Com), pp. 467–474. IEEE (2013)

3. Hormozi, E., Hormozi, H., Akbari, M.K., Javan, M.S.: Using of machine learning into
cloud environment (A Survey): managing and scheduling of resources in cloud systems.
In: 2012 Seventh International Conference on P2P, Parallel, Grid, Cloud and Internet
Computing (3PGCIC), pp. 363–368 (2012)

4. Beloglazov, A., Buyya, R.: Energy efficient resource management in virtualized cloud data
centers. In: Proceedings of the 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, pp. 826–831. IEEE Computer Society (2010)

5. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for
efficient management of data centers for cloud computing. Future Gener. Comput. Syst.
28, 755–768 (2012)

6. Hashizume, K., Rosado, D.G., Fernández-Medina, E., Fernandez, E.B.: An analysis of se-
curity issues for cloud computing. J. Internet Serv. Appl. 4, 1–13 (2013)

7. Fernandes, D.A., Soares, L.F., Gomes, J.V., Freire, M.M., Inácio, P.R.: Security issues in
cloud environments: a survey. Int. J. Inf. Secur. 13, 113–170 (2014)

8. Bontempi, G., Ben Taieb, S., Le Borgne, Y.-A.: Machine learning strategies for time
series forecasting. In: Aufaure, M.-A., Zimányi, E. (eds.) eBISS 2012. LNBIP, vol. 138,
pp. 62–77. Springer, Heidelberg (2013)

9. Aggarwal, C.C.: Outlier analysis. Springer Science & Business Media (2013)
10. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. ACM Comput.

Surv. CSUR. 41, 15 (2009)
11. Wang, C., Talwar, V., Schwan, K., Ranganathan, P.: Online detection of utility cloud

anomalies using metric distributions. In: 2010 IEEE Network Operations and Management
Symposium (NOMS), pp. 96–103. IEEE (2010)

12. Wang, C., Viswanathan, K., Choudur, L., Talwar, V., Satterfield, W., Schwan, K.: Statis-
tical techniques for online anomaly detection in data centers. In: 2011 IFIP/IEEE Interna-
tional Symposium on Integrated Network Management (IM), pp. 385–392 (2011)

13. Dean, D.J., Nguyen, H., Gu, X.: Ubl: unsupervised behavior learning for predicting per-
formance anomalies in virtualized cloud systems. In: Proceedings of the 9th International
Conference on Autonomic Computing, pp. 191–200. ACM (2012)

14. Vallis, O., Hochenbaum, J., Kejariwal, A.: A novel technique for long-term anomaly de-
tection in the cloud. In: Proceedings of the 6th USENIX Conference on Hot Topics in
Cloud Computing, USENIX Association, Berkeley, CA, USA, pp. 15–15 (2014)

 Early Detection of Fraud Storms in the Cloud 67

15. Li, L., McCann, J., Pollard, N.S., Faloutsos, C.: Dynammo: Mining and summarization of
coevolving sequences with missing values. In: Proceedings of the 15th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, pp. 507–516. ACM
(2009)

16. Wellenzohn, K., Mitterer, H., Gamper, J., Böhlen, M.H., Khayati, M.: Missing Value Im-
putation in Time Series using Top-k Case Matching

17. Xie, Y., Huang, J., Willett, R.: Changepoint detection for high-dimensional time series
with missing data. ArXiv Prepr. ArXiv12085062 (2012)

18. Modi, C., Patel, D., Borisaniya, B., Patel, H., Patel, A., Rajarajan, M.: A survey of intru-
sion detection techniques in Cloud. J. Netw. Comput. Appl. 36, 42–57 (2013)

19. Bay, S., Saito, K., Ueda, N., Langley, P.: A framework for discovering anomalous regimes
in multivariate time-series data with local models. In: Symposium on Machine Learning
for Anomaly Detection, Stanford, USA (2004)

20. Rousseeuw, P.J., Driessen, K.V.: A fast algorithm for the minimum covariance determi-
nant estimator. Technometrics 41, 212–223 (1999)

21. Multivariate normal distribution (2015). http://en.wikipedia.org/w/index.php?title=
Multivariate_normal_distribution&oldid=651587942

22. Genz, A., Bretz, F.: Computation of multivariate normal and t probabilities. Springer
Science & Business Media (2009)

	Early Detection of Fraud Storms in the Cloud
	1 Introduction
	2 Methods
	2.1 The Problem Setting
	2.2 The Labels
	2.3 The Analyzed Signals
	2.4 Learning Approaches
	2.5 Performance Evaluation

	3 Results
	3.1 Analysis Approaches Comparison
	3.2 Handling Missing and Corrupted Data
	3.3 The Effect of the Data Accumulation Period Length

	4 The System
	5 Discussion
	References

