Abstract
Machine Learning methods and algorithms are often highly modular in the sense that they rely on a large number of subalgorithms that are in principle interchangeable. For example, it is often possible to use various kinds of pre- and post-processing and various base classifiers or regressors as components of the same modular approach. We propose a framework, called Scavenger, that allows evaluating whole families of conceptually similar algorithms efficiently. The algorithms are represented as compositions, couplings and products of atomic subalgorithms. This allows partial results to be cached and shared between different instances of a modular algorithm, so that potentially expensive partial results need not be recomputed multiple times. Furthermore, our framework deals with issues of the parallel execution, load balancing, and with the backup of partial results for the case of implementation or runtime errors. Scavenger is licensed under the GPLv3 and can be downloaded freely at https://github.com/jorro/scavenger.
Chapter PDF
Similar content being viewed by others
References
Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Tyukin, A., Kramer, S., Wicker, J. (2015). Scavenger – A Framework for Efficient Evaluation of Dynamic and Modular Algorithms. In: Bifet, A., et al. Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2015. Lecture Notes in Computer Science(), vol 9286. Springer, Cham. https://doi.org/10.1007/978-3-319-23461-8_40
Download citation
DOI: https://doi.org/10.1007/978-3-319-23461-8_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23460-1
Online ISBN: 978-3-319-23461-8
eBook Packages: Computer ScienceComputer Science (R0)