
Scavenger – A Framework for Efficient
Evaluation of Dynamic and Modular Algorithms

Andrey Tyukin , Stefan Kramer, and Jörg Wicker(B)

Johannes Gutenberg-Universität Mainz, Staudingerweg 9, 55128 Mainz, Germany
tyukiand@students.uni-mainz.de, {kramer,wicker}@informatik.uni-mainz.de

Abstract. Machine Learning methods and algorithms are often highly
modular in the sense that they rely on a large number of subalgorithms
that are in principle interchangeable. For example, it is often possible to
use various kinds of pre- and post-processing and various base classifiers
or regressors as components of the same modular approach. We propose
a framework, called Scavenger, that allows evaluating whole families
of conceptually similar algorithms efficiently. The algorithms are repre-
sented as compositions, couplings and products of atomic subalgorithms.
This allows partial results to be cached and shared between different
instances of a modular algorithm, so that potentially expensive partial
results need not be recomputed multiple times. Furthermore, our frame-
work deals with issues of the parallel execution, load balancing, and with
the backup of partial results for the case of implementation or runtime
errors. Scavenger is licensed under the GPLv3 and can be downloaded
freely at https://github.com/jorro/scavenger.

1 Introduction

Consider the following example: Suppose we want to compare different instances
of a modular algorithm Af,g that consists of two major parts: a preprocessing
part f , and a core algorithm g: Af,g(x) = g(f(x)), with f ∈ {f1, . . . , fn} and
g ∈ {g1, . . . , gm}. We could evaluate each combination separately, and then
choose the best performing combination. However, this results in a repeated
computation of each fi(x), one time for each possible core-algorithm gj . Hence, it
is beneficial to cache and to keep intermediate results, and to share these results
between the members of the algorithm family {Af,g}f,g to avoid unnecessary
recomputation. Yet, we want to keep parallel execution, although the evaluation
of the family of algorithms with shared subalgorithms is no longer embarrassingly
parallel.

In the demo, we present Scavenger, a framework that simplifies the repre-
sentation and evaluation of families of algorithms that share common subalgo-
rithms. The user of Scavenger formulates a family of algorithms in a declara-
tive style as a directed acyclic graph (DAG) of subalgorithms which can in turn
spawn arbitrarily complex DAGs to carry out its computation. The whole job,
represented as a DAG is then evaluated in a way that is suitable for single or

c© Springer International Publishing Switzerland 2015
A. Bifet et al. (Eds.): ECML PKDD 2015, Part III, LNAI 9286, pp. 325–328, 2015.
DOI: 10.1007/978-3-319-23461-8 40

https://github.com/jorro/scavenger


326 A. Tyukin et al.

multiple computers (including clusters). In contrast to cluster engines or map-
reduce approaches that process large amounts of data with a single algorithm,
our framework is focused on the use case with a moderate amount of data, but
a large number of algorithms.

Workflow systems like Taverna1, Knime2, WEKA3, Pipeline Pilot4, or
ADAMS5 provide an easy-to-use interface to carry out experiments with repet-
itive steps. This makes them closely related to Scavenger. Yet, caching and
reusing of intermediate results is not a central aspect of these systems, which
is the core functionality and benefit of Scavenger. Additionally, Scavenger
was designed with an easy-to-use mechanism to run on clusters in contrast to
workflow systems, which tend to orient more on the single desktop use case (note
that we talk about the emphasis of the system, exceptions do exist).

2 The Scavenger Framework

The back-end of the Scavenger is built on top of the Akka framework6. Akka
provides an implementation of an actor system that can be distributed across
multiple physical compute nodes connected by a network. Actor systems are
hierarchical collections of actors. Actors are lightweight entities that are charac-
terized by their internal state and their reactions on incoming messages. Every
actor has its own mailbox, and communicates with the outside world exclu-
sively by sending and receiving messages. Conceptually one can think that each
actor is executed on its own thread, however, in reality actors are much more
lightweight than threads of the operating system. The messages are usually sim-
ple, immutable, serializable JVM objects which can be either passed by reference
within a single JVM or serialized and sent over network via the TCP/IP protocol.

The Akka framework ensures that all actors get enough CPU time for the
whole system to stay responsive, delivers the messages sent by actors, handles
error propagation within the actor system, and also takes care about the commu-
nication between multiple actor systems that are running on different physical
machines. Users have only to specify various types of actors with their behaviors
as well as the kinds of messages that are exchanged between the actors.

The Scavenger back-end uses multiple types of virtual nodes in order to do
its job. Each node is controlled by an actor that is responsible for communication
with other nodes. For simplicity, one can think of each virtual node running on a
separate physical machine, but this is actually not required: multiple Scavenger
nodes can coexist on the same physical machine, or even be executed within
a single JVM. The back-end implements the classical Master-Worker pattern.
There are currently three types of nodes: the seed node, the master node, and

1 see http://www.taverna.org.uk/
2 see http://www.knime.org/
3 see http://www.cs.waikato.ac.nz/ml/weka/
4 see http://accelrys.com/products/pipeline-pilot/
5 see https://adams.cms.waikato.ac.nz/elgg/
6 see http://akka.io

http://www.taverna.org.uk/
http://www.knime.org/
http://www.cs.waikato.ac.nz/ml/weka/
http://accelrys.com/products/pipeline-pilot/
https://adams.cms.waikato.ac.nz/elgg/
http://akka.io


Scavenger – A Framework for Efficient Evaluation 327

the worker node. When a Scavenger service is running, a single seed node, a
master node, and multiple worker nodes must be active.

The seed node is responsible for establishing connections between all other
nodes. The main purpose of the seed node is to wait for a handshake message
from the master and then to tell each worker node where the master node is.

The master node communicates directly with the client application. It trans-
lates the incoming computation-valued requests from the client into a form that
is suitable for parallel computation by subdividing it into smaller tasks, and then
schedules these tasks for execution. It coordinates the work of the worker nodes,
and is responsible for load balancing and dealing with failure of single worker
nodes. It is also responsible for caching and backing up of intermediate results.

The worker nodes provide the raw computing power. They receive internal
jobs, compute the result, and send it back to the master node.

3 Case Study: Autoencoders

Autoencoders are neural networks that can be trained in an unsupervised man-
ner [1]. The input and the output clamped to both ends of the autoencoder
are the same. The information is pressed through the central bottleneck layer.
The activations of neurons in the central layer can be considered a compressed
representation of the data. We train autoencoders as follows. We start with a
single layer of neurons. Then we keep unfolding the innermost layer, eventu-
ally train every new layer separately, and then tune the whole network using
backpropagation. Furthermore, we have the possibility to train the final inner
layer as an Restricted Boltzmann Machine (RBM) or to tune it as a separate
autoencoder with one single layer. We can also tune the whole network using
backpropagation. The trained network can have different depths and different
dimensions of layers. Obviously, if one autoencoder arises as an unfolded version
of another autoencoder, models will share some common intermediate results
when executed. We want to briefly sketch how one would approach the training
of the family of autoencoders using the Scavenger framework. First, we have
to define the atomic algorithms unfold, trainInnerAsRbm tuneInnerAsAnn,
tuneWholeNetwork:
1 case class TuneInner extends Algorithm[(Data, Autoencoder), Autoencoder] {
2 def identifier = formalccc.Atom("tuneInner")
3 def difficulty = Parallel
4 def cachingPolicy = CacheGlobally
5 def apply(dataAndEnc: (Data, Autoencoder), ctx: Context):
6 Future[Autoencoder] = {...}
7 }

The implementation of iterative optimization methods requires some more
work. The reason is that we have to transform synchronous while loops into
asynchronous code. For this, the Scavenger framework provides asynchronous
control structures like async while. In an iterative optimization method like
backpropagation, we have to replace all while that have a body that requires
substantial computation time by async while. Furthermore, we have to chain
asynchronous calls by Futures flatMap instead of usual semicolons:



328 A. Tyukin et al.

1 case class Backpropagation extends Algorithm[(Data, Autoencoder), Autoencoder] {
2 ...
3 def apply(da: (Data, Autoencoder), ctx: Context):
4 Future[Autoencoder] = {
5 async_while(predicate) {/* submitting ad-hoc jobs to ‘ctx‘, waiting for

results*/}.flatMap{...}

When all the basic atomic algorithms are defined, we might want to partially
apply some of them to the data, so that we have a uniform collection of algo-
rithms that map Autoencoders to new Autoencoders, and do not require any
extra input:
1 val data = Computation("theData") { /* load data from file */ }
2 val tuneWholeWithData = tuneWholeNetwork.partialFst(data)

Now suppose that we have an implementation that trains an autoencoder
with a specified training strategy:
1 def autoencoder(trainingStrategy: Algorithm[Autoencoder, Autoencoder],numLayers):

Computation[Autoencoder] = {...}

Since we do not know which combination performs best according to some
error measure, we generate every possible combination of trainInnerAsRbm,
tuneInnerAsAnn and a identity operation Id:
1 val strategies = for {
2 f <- List(trainInnerAsRbmWithData, Id)
3 g <- List(tuneInnerAsAnnWithData, Id)
4 h <- List(tuneWholeWithData, Id)
5 } yield (h o g o f)

Now we submit multiple autoencoder-jobs to the Scavenger framework. We
vary the depth and the training strategy.
1 val futures = for {
2 s <- strategies
3 n <- List(2,3,4,5)
4 } scavengerContext.submit(autoencoder(s, n))
5 val allResults = Future.sequence(futures)
6 val results = Await.result(allResults)

After this, depending on how we are executing the application, we could issue
some cleanup instructions and shut down the system.

4 Conclusion

Our framework combines the aspects of caching, persistence of intermediate
results, and parallelism. It provides a simple and minimalist user API and can
be used on single computers or clusters. It can simplify and accelerate the devel-
opment and execution of experiments that involve a large number of algorithms
that share common subalgorithms. In the demo, we will show the simplicity and
power of the framework by means of simple examples that will be developed step
by step.

References

1. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural
networks. Science 313(5786), 504–507 (2006)


	Scavenger -- A Framework for Efficient Evaluation of Dynamic and Modular Algorithms
	1 Introduction
	2 The Scavenger Framework
	3 Case Study: Autoencoders
	4 Conclusion
	References


