Abstract
Record linkage represents the process of identifying records that refer to the same real-world entity across multiple sources. In the recent past, the large explosion of data from organizations and individuals has created critical challenges in record linkage process, leading the scientific community to develop a rich series of techniques. Among these recent developments, the design of record linkage solutions for medical data is a cornerstone for health-care systems, as personal identifying information, such as name and date of birth, is often used for linkage. In this setting, record linkage solutions are expected to preserve individual patients’ privacy in addition to be effective and efficient. In this chapter, we provide a broad review of the recent works in privacy preserving record linkage (PPRL). From a privacy-centric perspective, we summarize a comprehensive framework of the PPRL process and describe the privacy assurance techniques adopted for each step in the framework. With the applications in biomedical domain in mind, we identify several challenges for PPRL and discuss future research directions.
This work was done while the author “Liyue Fan” was at Emory University.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private databases. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD ’03, pp. 86–97. ACM, New York, NY (2003). doi:10.1145/872757.872771. http://www.doi.acm.org/10.1145/872757.872771
Al-Lawati, A., Lee, D., McDaniel, P.: Blocking-aware private record linkage. In: Proceedings of the 2nd International Workshop on Information Quality in Information Systems, IQIS ’05, pp. 59–68. ACM, New York, NY (2005). doi:10.1145/1077501.1077513. http://www.doi.acm.org/10.1145/1077501.1077513
Atallah, M.J., Kerschbaum, F., Du, W.: Secure and private sequence comparisons. In: Proceedings of the 2003 ACM Workshop on Privacy in the Electronic Society, WPES ’03, pp. 39–44. ACM, New York, NY (2003). doi:10.1145/1005140.1005147. http://www.doi.acm.org/10.1145/1005140.1005147
Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods for record linkage. In: ACM SIGKDD, vol. 3, pp. 25–27. Citeseer (2003)
Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970). doi:10.1145/362686.362692. http://www.doi.acm.org/10.1145/362686.362692
Bonomi, L., Xiong, L., Chen, R., Fung, B.C.: Frequent grams based embedding for privacy preserving record linkage. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12, pp. 1597–1601. ACM, New York, NY (2012). doi:10.1145/2396761.2398480. http://www.doi.acm.org/10.1145/2396761.2398480
Christen, P.: A comparison of personal name matching: Techniques and practical issues. In: Sixth IEEE International Conference on Data Mining Workshops, 2006. ICDM Workshops 2006, pp. 290–294 (2006). doi:10.1109/ICDMW.2006.2
Christen, P.: A survey of indexing techniques for scalable record linkage and deduplication. IEEE Trans. Knowl. Data Eng. 24(9), 1537–1555 (2012). doi:10.1109/TKDE.2011.127. http://www.dx.doi.org/10.1109/TKDE.2011.127
Churches, T., Christen, P.: Some methods for blindfolded record linkage. BMC Med. Inform. Decis. Mak. 4(1), 9 (2004). doi:10.1186/1472-6947-4-9. http://www.biomedcentral.com/1472-6947/4/9
Du, W., Atallah, M.J.: Protocols for secure remote database access with approximate matching. In: Ghosh, A. (ed.) E-Commerce Security and Privacy. Advances in Information Security, vol. 2, pp. 87–111. Springer, Berlin (2001). doi:10.1007/978-1-4615-1467-1_6. http://www.dx.doi.org/10.1007/978-1-4615-1467-1_6
Durham, E.A.: A framework for accurate, efficient private record linkage. Ph.D. Thesis (2012)
Durham, E., Xue, Y., Kantarcioglu, M., Malin, B.: Quantifying the correctness, computational complexity, and security of privacy-preserving string comparators for record linkage. Inf. Fusion 13(4), 245–259 (2012). doi:10.1016/j.inffus.2011.04.004. http://www.dx.doi.org/10.1016/j.inffus.2011.04.004
Durham, E.A., Kantarcioglu, M., Xue, Y., Toth, C., Kuzu, M., Malin, B.: Composite bloom filters for secure record linkage. IEEE Trans. Knowl. Data Eng. 99(preprints), 1 (2013). http://www.doi.ieeecomputersociety.org/10.1109/TKDE.2013.91
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 4052, pp. 1–12. Springer, Berlin, Heidelberg (2006). doi:10.1007/11787006_1. http://www.dx.doi.org/10.1007/11787006_1
Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) Theory and Applications of Models of Computation. Lecture Notes in Computer Science, vol. 4978, pp. 1–19. Springer, Berlin, Heidelberg (2008). doi:10.1007/978-3-540-79228-4_1. http://www.dx.doi.org/10.1007/978-3-540-79228-4_1
Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate record detection: a survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007). doi:10.1109/TKDE.2007.250581
Fellegi, I.P., Sunter, A.B.: A theory for record linkage. J. Am. Stat. Assoc. 64(328), 1183–1210 (1969)
Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology - EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027, pp. 1–19. Springer, Berlin, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_1. http://www.dx.doi.org/10.1007/978-3-540-24676-3_1
Getoor, L., Machanavajjhala, A.: Entity resolution: theory, practice & open challenges. Proc. VLDB Endow. 5(12), 2018–2019 (2012). doi:10.14778/2367502.2367564. http://www.dx.doi.org/10.14778/2367502.2367564
Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proceedings of the 25th International Conference on Very Large Data Bases, VLDB ’99, pp. 518–529. Morgan Kaufmann Publishers Inc., San Francisco, CA (1999). http://www.dl.acm.org/citation.cfm?id=645925.671516
Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New York, NY (2004)
Hall, R., Fienberg, S.E.: Privacy-preserving record linkage. In: Proceedings of the 2010 International Conference on Privacy in Statistical Databases, PSD’10, pp. 269–283. Springer, Berlin, Heidelberg (2010). http://www.dl.acm.org/citation.cfm?id=1888848.1888878
Hjaltason, G., Samet, H.: Properties of embedding methods for similarity searching in metric spaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 530–549 (2003)
Inan, A., Kantarcioglu, M., Ghinita, G., Bertino, E.: Private record matching using differential privacy. In: Proceedings of the 13th International Conference on Extending Database Technology, EDBT ’10, pp. 123–134. ACM, New York, NY (2010). doi:10.1145/1739041.1739059. http://www.doi.acm.org/10.1145/1739041.1739059
Jiang, W., Clifton, C.: A secure distributed framework for achieving k-anonymity. VLDB J. 15(4), 316–333 (2006). doi:10.1007/s00778-006-0008-z. http://www.dx.doi.org/10.1007/s00778-006-0008-z
Kantarcioglu, M., Jiang, W., Malin, B.: A privacy-preserving framework for integrating person-specific databases. In: Domingo-Ferrer, J., Saygn, Y. (eds.) Privacy in Statistical Databases. Lecture Notes in Computer Science, vol. 5262, pp. 298–314. Springer, Berlin, Heidelberg (2008). doi:10.1007/978-3-540-87471-3_25. http://www.dx.doi.org/10.1007/978-3-540-87471-3_25
Karakasidis, A., Verykios, V.S.: Secure blocking + secure matching = secure record linkage. J. Comput. Sci. Eng. 5(3), 223–235 (2011)
Karakasidis, A., Verykios, V.S.: Reference table based k-anonymous private blocking. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12, pp. 859–864. ACM, New York, NY (2012). doi:10.1145/2245276.2245444. http://www.doi.acm.org/10.1145/2245276.2245444
Karakasidis, A., Verykios, V.S., Christen, P.: Fake injection strategies for private phonetic matching. In: Proceedings of the 6th International Conference, and 4th International Conference on Data Privacy Management and Autonomous Spontaneus Security, DPM’11, pp. 9–24. Springer, Berlin, Heidelberg (2012). doi:10.1007/978-3-642-28879-1_2. http://www.dx.doi.org/10.1007/978-3-642-28879-1_2
Kirsch, A., Mitzenmacher, M.: Less hashing, same performance: building a better bloom filter. Random Struct. Algoritm. 33(2), 187–218 (2008). doi:10.1002/rsa.v33:2. http://www.dx.doi.org/10.1002/rsa.v33:2
Kum, H.C., Krishnamurthy, A., Machanavajjhala, A., Reiter, M.K., Ahalt, S.: Privacy preserving interactive record linkage (ppirl). J. Am. Med. Inform. Assoc. 21(2), 212–220 (2014). doi:10.1136/amiajnl-2013-002165
Kuzu, M., Kantarcioglu, M., Durham, E., Malin, B.: A constraint satisfaction cryptanalysis of bloom filters in private record linkage. In: Fischer-Hübner, S., Hopper, N. (eds.) Privacy Enhancing Technologies. Lecture Notes in Computer Science, vol. 6794, pp. 226–245. Springer, Berlin, Heidelberg (2011). doi:10.1007/978-3-642-22263-4_13. http://www.dx.doi.org/10.1007/978-3-642-22263-4_13
Kuzu, M., Kantarcioglu, M., Inan, A., Bertino, E., Durham, E., Malin, B.: Efficient privacy-aware record integration. In: Proceedings of the 16th International Conference on Extending Database Technology, EDBT ’13, pp. 167–178. ACM, New York, NY (2013). doi:10.1145/2452376.2452398. http://www.doi.acm.org/10.1145/2452376.2452398
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Tech. Rep. 8 (1966)
Li, F., Chen, Y., Luo, B., Lee, D., Liu, P.: Privacy preserving group linkage. In: Proceedings of the 23rd International Conference on Scientific and Statistical Database Management, SSDBM’11, pp. 432–450. Springer, Berlin, Heidelberg (2011). http://www.dl.acm.org/citation.cfm?id=2032397.2032432
Mohammed, N., Fung, B., Debbabi, M.: Anonymity meets game theory: secure data integration with malicious participants. VLDB J. 20(4), 567–588 (2011). doi:10.1007/s00778-010-0214-6. http://www.dx.doi.org/10.1007/s00778-010-0214-6
Nin, J., Muntes-Mulero, V., Martinez-Bazan, N., Larriba-Pey, J.L.: On the use of semantic blocking techniques for data cleansing and integration. In: Proceedings of the 11th International Database Engineering and Applications Symposium, IDEAS ’07, pp. 190–198. IEEE Computer Society, Washington, DC (2007). doi:10.1109/IDEAS.2007.36. http://www.dx.doi.org/10.1109/IDEAS.2007.36
O’Keefe, C.M., Yung, M., Gu, L., Baxter, R.: Privacy-preserving data linkage protocols. In: Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, WPES ’04, pp. 94–102. ACM, New York, NY (2004). doi:10.1145/1029179.1029203. http://www.doi.acm.org/10.1145/1029179.1029203
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Proceedings of the 17th International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT’99, pp. 223–238. Springer, Berlin, Heidelberg (1999). http://www.dl.acm.org/citation.cfm?id=1756123.1756146
Pang, C., Gu, L., Hansen, D., Maeder, A.: Privacy-preserving fuzzy matching using a public reference table. In: Intelligent Patient Management, pp. 71–89. Springer, Berlin, Heidelberg (2009)
Ravikumar, P., Cohen, W.W., Fienberg, S.E.: A secure protocol for computing string distance metrics. In: IEEE ICDM Workshop on Privacy and Security Aspects of Data Mining (2004)
Salton, G. (ed.): Automatic Text Processing. Addison-Wesley Longman Publishing Co Inc., Boston, MA (1988)
Scannapieco, M., Figotin, I., Bertino, E., Elmagarmid, A.K.: Privacy preserving schema and data matching. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, SIGMOD ’07, pp. 653–664. ACM, New York, NY (2007). doi:10.1145/1247480.1247553. http://doi.acm.org/10.1145/1247480.1247553
Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn. Wiley, New York, NY (1995)
Schnell, R., Bachteler, T., Reiher, J.: Privacy-preserving record linkage using bloom filters. BMC Med. Inform. Decis. Mak. 9(1), 41 (2009). doi:10.1186/1472-6947-9-41. http://www.biomedcentral.com/1472-6947/9/41
Schnell, R., Bachteler, T., Reiher, J.: A novel error-tolerant anonymous linking code. In: Working Paper WP-GRLC-2011-02, German Record Linkage Center, Duisburg (2011)
Sweeney, L.: Weaving technology and policy together to maintain confidentiality. J. Law Med. Ethics 25(2–3), 98–110 (1997). doi:10.1111/j.1748-720x.1997.tb01885.x. http://www.dx.doi.org/10.1111/j.1748-720x.1997.tb01885.x
Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowledge Based Syst. 10(5), 557–570 (2002). doi:10.1142/S0218488502001648. http://dx.doi.org/10.1142/S0218488502001648
The European Parliament and the council of the European Union: EU Directive 95/46/EC. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML (1995). Accessed 31 July 2014
Trepetin, S.: Privacy-preserving string comparisons in record linkage systems: a review. Inf. Secur. J. Glob. Perspect. 17(5-6), 253–266 (2008). doi:10.1080/19393550802492503. http://www.dx.doi.org/10.1080/19393550802492503
U.S. Department of Health and Human Services: HIPAA privacy rule. http://www.hhs.gov/ocr/privacy/hipaa/administrative/privacyrule/ (2002). Accessed 31 July 2014
Vatsalan, D., Christen, P., Verykios, V.S.: A taxonomy of privacy-preserving record linkage techniques. Inf. Syst. 38(6), 946–969 (2013). doi:10.1016/j.is.2012.11.005. http://www.dx.doi.org/10.1016/j.is.2012.11.005
Yakout, M., Atallah, M.J., Elmagarmid, A.: Efficient and practical approach for private record linkage. J. Data Inf. Qual. 3(3), 5:1–5:28 (2012). doi:10.1145/2287714.2287715. http://doi.acm.org/10.1145/2287714.2287715
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Bonomi, L., Fan, L., Xiong, L. (2015). A Review of Privacy Preserving Mechanisms for Record Linkage. In: Gkoulalas-Divanis, A., Loukides, G. (eds) Medical Data Privacy Handbook. Springer, Cham. https://doi.org/10.1007/978-3-319-23633-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-23633-9_10
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23632-2
Online ISBN: 978-3-319-23633-9
eBook Packages: Computer ScienceComputer Science (R0)