Skip to main content

A Review of Privacy Preserving Mechanisms for Record Linkage

  • Chapter
Medical Data Privacy Handbook

Abstract

Record linkage represents the process of identifying records that refer to the same real-world entity across multiple sources. In the recent past, the large explosion of data from organizations and individuals has created critical challenges in record linkage process, leading the scientific community to develop a rich series of techniques. Among these recent developments, the design of record linkage solutions for medical data is a cornerstone for health-care systems, as personal identifying information, such as name and date of birth, is often used for linkage. In this setting, record linkage solutions are expected to preserve individual patients’ privacy in addition to be effective and efficient. In this chapter, we provide a broad review of the recent works in privacy preserving record linkage (PPRL). From a privacy-centric perspective, we summarize a comprehensive framework of the PPRL process and describe the privacy assurance techniques adopted for each step in the framework. With the applications in biomedical domain in mind, we identify several challenges for PPRL and discuss future research directions.

This work was done while the author “Liyue Fan” was at Emory University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Evfimievski, A., Srikant, R.: Information sharing across private databases. In: Proceedings of the 2003 ACM SIGMOD International Conference on Management of Data, SIGMOD ’03, pp. 86–97. ACM, New York, NY (2003). doi:10.1145/872757.872771. http://www.doi.acm.org/10.1145/872757.872771

  2. Al-Lawati, A., Lee, D., McDaniel, P.: Blocking-aware private record linkage. In: Proceedings of the 2nd International Workshop on Information Quality in Information Systems, IQIS ’05, pp. 59–68. ACM, New York, NY (2005). doi:10.1145/1077501.1077513. http://www.doi.acm.org/10.1145/1077501.1077513

  3. Atallah, M.J., Kerschbaum, F., Du, W.: Secure and private sequence comparisons. In: Proceedings of the 2003 ACM Workshop on Privacy in the Electronic Society, WPES ’03, pp. 39–44. ACM, New York, NY (2003). doi:10.1145/1005140.1005147. http://www.doi.acm.org/10.1145/1005140.1005147

  4. Baxter, R., Christen, P., Churches, T.: A comparison of fast blocking methods for record linkage. In: ACM SIGKDD, vol. 3, pp. 25–27. Citeseer (2003)

    Google Scholar 

  5. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun. ACM 13(7), 422–426 (1970). doi:10.1145/362686.362692. http://www.doi.acm.org/10.1145/362686.362692

  6. Bonomi, L., Xiong, L., Chen, R., Fung, B.C.: Frequent grams based embedding for privacy preserving record linkage. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM ’12, pp. 1597–1601. ACM, New York, NY (2012). doi:10.1145/2396761.2398480. http://www.doi.acm.org/10.1145/2396761.2398480

  7. Christen, P.: A comparison of personal name matching: Techniques and practical issues. In: Sixth IEEE International Conference on Data Mining Workshops, 2006. ICDM Workshops 2006, pp. 290–294 (2006). doi:10.1109/ICDMW.2006.2

    Google Scholar 

  8. Christen, P.: A survey of indexing techniques for scalable record linkage and deduplication. IEEE Trans. Knowl. Data Eng. 24(9), 1537–1555 (2012). doi:10.1109/TKDE.2011.127. http://www.dx.doi.org/10.1109/TKDE.2011.127

  9. Churches, T., Christen, P.: Some methods for blindfolded record linkage. BMC Med. Inform. Decis. Mak. 4(1), 9 (2004). doi:10.1186/1472-6947-4-9. http://www.biomedcentral.com/1472-6947/4/9

  10. Du, W., Atallah, M.J.: Protocols for secure remote database access with approximate matching. In: Ghosh, A. (ed.) E-Commerce Security and Privacy. Advances in Information Security, vol. 2, pp. 87–111. Springer, Berlin (2001). doi:10.1007/978-1-4615-1467-1_6. http://www.dx.doi.org/10.1007/978-1-4615-1467-1_6

  11. Durham, E.A.: A framework for accurate, efficient private record linkage. Ph.D. Thesis (2012)

    Google Scholar 

  12. Durham, E., Xue, Y., Kantarcioglu, M., Malin, B.: Quantifying the correctness, computational complexity, and security of privacy-preserving string comparators for record linkage. Inf. Fusion 13(4), 245–259 (2012). doi:10.1016/j.inffus.2011.04.004. http://www.dx.doi.org/10.1016/j.inffus.2011.04.004

  13. Durham, E.A., Kantarcioglu, M., Xue, Y., Toth, C., Kuzu, M., Malin, B.: Composite bloom filters for secure record linkage. IEEE Trans. Knowl. Data Eng. 99(preprints), 1 (2013). http://www.doi.ieeecomputersociety.org/10.1109/TKDE.2013.91

  14. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 4052, pp. 1–12. Springer, Berlin, Heidelberg (2006). doi:10.1007/11787006_1. http://www.dx.doi.org/10.1007/11787006_1

  15. Dwork, C.: Differential privacy: a survey of results. In: Agrawal, M., Du, D., Duan, Z., Li, A. (eds.) Theory and Applications of Models of Computation. Lecture Notes in Computer Science, vol. 4978, pp. 1–19. Springer, Berlin, Heidelberg (2008). doi:10.1007/978-3-540-79228-4_1. http://www.dx.doi.org/10.1007/978-3-540-79228-4_1

  16. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate record detection: a survey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007). doi:10.1109/TKDE.2007.250581

    Article  Google Scholar 

  17. Fellegi, I.P., Sunter, A.B.: A theory for record linkage. J. Am. Stat. Assoc. 64(328), 1183–1210 (1969)

    Article  MATH  Google Scholar 

  18. Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J. (eds.) Advances in Cryptology - EUROCRYPT 2004. Lecture Notes in Computer Science, vol. 3027, pp. 1–19. Springer, Berlin, Heidelberg (2004). doi:10.1007/978-3-540-24676-3_1. http://www.dx.doi.org/10.1007/978-3-540-24676-3_1

  19. Getoor, L., Machanavajjhala, A.: Entity resolution: theory, practice & open challenges. Proc. VLDB Endow. 5(12), 2018–2019 (2012). doi:10.14778/2367502.2367564. http://www.dx.doi.org/10.14778/2367502.2367564

  20. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hashing. In: Proceedings of the 25th International Conference on Very Large Data Bases, VLDB ’99, pp. 518–529. Morgan Kaufmann Publishers Inc., San Francisco, CA (1999). http://www.dl.acm.org/citation.cfm?id=645925.671516

  21. Goldreich, O.: Foundations of Cryptography: Volume 2, Basic Applications. Cambridge University Press, New York, NY (2004)

    Book  MATH  Google Scholar 

  22. Hall, R., Fienberg, S.E.: Privacy-preserving record linkage. In: Proceedings of the 2010 International Conference on Privacy in Statistical Databases, PSD’10, pp. 269–283. Springer, Berlin, Heidelberg (2010). http://www.dl.acm.org/citation.cfm?id=1888848.1888878

  23. Hjaltason, G., Samet, H.: Properties of embedding methods for similarity searching in metric spaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 530–549 (2003)

    Article  Google Scholar 

  24. Inan, A., Kantarcioglu, M., Ghinita, G., Bertino, E.: Private record matching using differential privacy. In: Proceedings of the 13th International Conference on Extending Database Technology, EDBT ’10, pp. 123–134. ACM, New York, NY (2010). doi:10.1145/1739041.1739059. http://www.doi.acm.org/10.1145/1739041.1739059

  25. Jiang, W., Clifton, C.: A secure distributed framework for achieving k-anonymity. VLDB J. 15(4), 316–333 (2006). doi:10.1007/s00778-006-0008-z. http://www.dx.doi.org/10.1007/s00778-006-0008-z

  26. Kantarcioglu, M., Jiang, W., Malin, B.: A privacy-preserving framework for integrating person-specific databases. In: Domingo-Ferrer, J., Saygn, Y. (eds.) Privacy in Statistical Databases. Lecture Notes in Computer Science, vol. 5262, pp. 298–314. Springer, Berlin, Heidelberg (2008). doi:10.1007/978-3-540-87471-3_25. http://www.dx.doi.org/10.1007/978-3-540-87471-3_25

  27. Karakasidis, A., Verykios, V.S.: Secure blocking + secure matching = secure record linkage. J. Comput. Sci. Eng. 5(3), 223–235 (2011)

    Article  Google Scholar 

  28. Karakasidis, A., Verykios, V.S.: Reference table based k-anonymous private blocking. In: Proceedings of the 27th Annual ACM Symposium on Applied Computing, SAC ’12, pp. 859–864. ACM, New York, NY (2012). doi:10.1145/2245276.2245444. http://www.doi.acm.org/10.1145/2245276.2245444

  29. Karakasidis, A., Verykios, V.S., Christen, P.: Fake injection strategies for private phonetic matching. In: Proceedings of the 6th International Conference, and 4th International Conference on Data Privacy Management and Autonomous Spontaneus Security, DPM’11, pp. 9–24. Springer, Berlin, Heidelberg (2012). doi:10.1007/978-3-642-28879-1_2. http://www.dx.doi.org/10.1007/978-3-642-28879-1_2

  30. Kirsch, A., Mitzenmacher, M.: Less hashing, same performance: building a better bloom filter. Random Struct. Algoritm. 33(2), 187–218 (2008). doi:10.1002/rsa.v33:2. http://www.dx.doi.org/10.1002/rsa.v33:2

  31. Kum, H.C., Krishnamurthy, A., Machanavajjhala, A., Reiter, M.K., Ahalt, S.: Privacy preserving interactive record linkage (ppirl). J. Am. Med. Inform. Assoc. 21(2), 212–220 (2014). doi:10.1136/amiajnl-2013-002165

    Article  Google Scholar 

  32. Kuzu, M., Kantarcioglu, M., Durham, E., Malin, B.: A constraint satisfaction cryptanalysis of bloom filters in private record linkage. In: Fischer-Hübner, S., Hopper, N. (eds.) Privacy Enhancing Technologies. Lecture Notes in Computer Science, vol. 6794, pp. 226–245. Springer, Berlin, Heidelberg (2011). doi:10.1007/978-3-642-22263-4_13. http://www.dx.doi.org/10.1007/978-3-642-22263-4_13

  33. Kuzu, M., Kantarcioglu, M., Inan, A., Bertino, E., Durham, E., Malin, B.: Efficient privacy-aware record integration. In: Proceedings of the 16th International Conference on Extending Database Technology, EDBT ’13, pp. 167–178. ACM, New York, NY (2013). doi:10.1145/2452376.2452398. http://www.doi.acm.org/10.1145/2452376.2452398

  34. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Tech. Rep. 8 (1966)

    Google Scholar 

  35. Li, F., Chen, Y., Luo, B., Lee, D., Liu, P.: Privacy preserving group linkage. In: Proceedings of the 23rd International Conference on Scientific and Statistical Database Management, SSDBM’11, pp. 432–450. Springer, Berlin, Heidelberg (2011). http://www.dl.acm.org/citation.cfm?id=2032397.2032432

  36. Mohammed, N., Fung, B., Debbabi, M.: Anonymity meets game theory: secure data integration with malicious participants. VLDB J. 20(4), 567–588 (2011). doi:10.1007/s00778-010-0214-6. http://www.dx.doi.org/10.1007/s00778-010-0214-6

  37. Nin, J., Muntes-Mulero, V., Martinez-Bazan, N., Larriba-Pey, J.L.: On the use of semantic blocking techniques for data cleansing and integration. In: Proceedings of the 11th International Database Engineering and Applications Symposium, IDEAS ’07, pp. 190–198. IEEE Computer Society, Washington, DC (2007). doi:10.1109/IDEAS.2007.36. http://www.dx.doi.org/10.1109/IDEAS.2007.36

  38. O’Keefe, C.M., Yung, M., Gu, L., Baxter, R.: Privacy-preserving data linkage protocols. In: Proceedings of the 2004 ACM Workshop on Privacy in the Electronic Society, WPES ’04, pp. 94–102. ACM, New York, NY (2004). doi:10.1145/1029179.1029203. http://www.doi.acm.org/10.1145/1029179.1029203

  39. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Proceedings of the 17th International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT’99, pp. 223–238. Springer, Berlin, Heidelberg (1999). http://www.dl.acm.org/citation.cfm?id=1756123.1756146

  40. Pang, C., Gu, L., Hansen, D., Maeder, A.: Privacy-preserving fuzzy matching using a public reference table. In: Intelligent Patient Management, pp. 71–89. Springer, Berlin, Heidelberg (2009)

    Google Scholar 

  41. Ravikumar, P., Cohen, W.W., Fienberg, S.E.: A secure protocol for computing string distance metrics. In: IEEE ICDM Workshop on Privacy and Security Aspects of Data Mining (2004)

    Google Scholar 

  42. Salton, G. (ed.): Automatic Text Processing. Addison-Wesley Longman Publishing Co Inc., Boston, MA (1988)

    Google Scholar 

  43. Scannapieco, M., Figotin, I., Bertino, E., Elmagarmid, A.K.: Privacy preserving schema and data matching. In: Proceedings of the 2007 ACM SIGMOD International Conference on Management of Data, SIGMOD ’07, pp. 653–664. ACM, New York, NY (2007). doi:10.1145/1247480.1247553. http://doi.acm.org/10.1145/1247480.1247553

  44. Schneier, B.: Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edn. Wiley, New York, NY (1995)

    MATH  Google Scholar 

  45. Schnell, R., Bachteler, T., Reiher, J.: Privacy-preserving record linkage using bloom filters. BMC Med. Inform. Decis. Mak. 9(1), 41 (2009). doi:10.1186/1472-6947-9-41. http://www.biomedcentral.com/1472-6947/9/41

  46. Schnell, R., Bachteler, T., Reiher, J.: A novel error-tolerant anonymous linking code. In: Working Paper WP-GRLC-2011-02, German Record Linkage Center, Duisburg (2011)

    Google Scholar 

  47. Sweeney, L.: Weaving technology and policy together to maintain confidentiality. J. Law Med. Ethics 25(2–3), 98–110 (1997). doi:10.1111/j.1748-720x.1997.tb01885.x. http://www.dx.doi.org/10.1111/j.1748-720x.1997.tb01885.x

  48. Sweeney, L.: K-anonymity: a model for protecting privacy. Int. J. Uncertainty Fuzziness Knowledge Based Syst. 10(5), 557–570 (2002). doi:10.1142/S0218488502001648. http://dx.doi.org/10.1142/S0218488502001648

  49. The European Parliament and the council of the European Union: EU Directive 95/46/EC. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31995L0046:en:HTML (1995). Accessed 31 July 2014

  50. Trepetin, S.: Privacy-preserving string comparisons in record linkage systems: a review. Inf. Secur. J. Glob. Perspect. 17(5-6), 253–266 (2008). doi:10.1080/19393550802492503. http://www.dx.doi.org/10.1080/19393550802492503

  51. U.S. Department of Health and Human Services: HIPAA privacy rule. http://www.hhs.gov/ocr/privacy/hipaa/administrative/privacyrule/ (2002). Accessed 31 July 2014

  52. Vatsalan, D., Christen, P., Verykios, V.S.: A taxonomy of privacy-preserving record linkage techniques. Inf. Syst. 38(6), 946–969 (2013). doi:10.1016/j.is.2012.11.005. http://www.dx.doi.org/10.1016/j.is.2012.11.005

  53. Yakout, M., Atallah, M.J., Elmagarmid, A.: Efficient and practical approach for private record linkage. J. Data Inf. Qual. 3(3), 5:1–5:28 (2012). doi:10.1145/2287714.2287715. http://doi.acm.org/10.1145/2287714.2287715

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Bonomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bonomi, L., Fan, L., Xiong, L. (2015). A Review of Privacy Preserving Mechanisms for Record Linkage. In: Gkoulalas-Divanis, A., Loukides, G. (eds) Medical Data Privacy Handbook. Springer, Cham. https://doi.org/10.1007/978-3-319-23633-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23633-9_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23632-2

  • Online ISBN: 978-3-319-23633-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics