Abstract
We introduce a novel application of handwriting recognition for Statistical Relational Learning. The proposed framework captures the intrinsic structure of handwriting by modeling fundamental character shape representations and their relationships using first-order logic. Our framework consists of three stages, (1) character extraction (2) feature generation and (3) class label prediction. In the character extraction stage, handwriting trajectory data is decoded into characters. Following this, character features (predicates) are defined across multiple levels - global, local and aggregated. Finally, a relational One-vs-All classifier is learned using relational functional gradient boosting (RFGB). We evaluate our approach on two datasets and demonstrate comparable accuracy to a well-established, meticulously engineered approach in the handwriting recognition paradigm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Getoor, L., Taskar, B.: Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)
Riedel, S., Chun, H.W., Takagi, T., Tsujii, J.: A Markov logic approach to bio-molecular event extraction. In: Proceedings of the Workshop on Current Trends in Biomedical Natural Language Processing: Shared Task, Association for Computational Linguistics, pp. 41–49 (2009)
Poon, H., Vanderwende, L.: Joint inference for knowledge extraction from biomedical literature. In: ACL, Association for Computational Linguistics, pp. 813–821 (2010)
Yoshikawa, K., Riedel, S., Asahara, M., Matsumoto, Y.: Jointly identifying temporal relations with Markov logic. In: ACL, pp. 405–413 (2009)
Poon, H., Domingos, P.: Unsupervised semantic parsing. In: EMNLP, Association for Computational Linguistics, pp. 1–10 (2009)
Davis, J., Burnside, E.S., de Castro Dutra, I., Page, D., Ramakrishnan, R., Costa, V.S., Shavlik, J.W.: View learning for statistical relational learning: with an application to mammography. In: IJCAI, DTIC Document, pp. 677–683 (2005)
Davis, J., Ong, I.M., Struyf, J., Burnside, E.S., Page, D., Costa, V.S.: Change of representation for statistical relational learning. In: IJCAI, pp. 2719–2726 (2007)
Davis, J., Burnside, E., de Castro Dutra, I., Page, D.L., Santos Costa, V.: An integrated approach to learning Bayesian networks of rules. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 84–95. Springer, Heidelberg (2005)
Natarajan, S., Khot, T., Kersting, K., Gutmann, B., Shavlik, J.: Gradient-based boosting for statistical relational learning: the relational dependency network case. Mach. Learn. 86(1), 25–56 (2012)
Weiss, J., Natarajan, S., Peissig, P., McCarty, C., Page, D.: Statistical relational learning to predict primary myocardial infarction from electronic health records. In: AI Magazine (2012)
Natarajan, S., Kersting, K., Ip, E., Jacobs, D., Carr, J.: Early prediction of coronary artery calcification levels using machine learning. In: Innovative Applications in AI (2013)
Natarajan, S., Saha, B., Joshi, S., Edwards, A., Khot, T., Davenport, E.M., Kersting, K., Whitlow, C.T., Maldjian, J.A.: Relational learning helps in three-way classification of Alzheimer patients from structural magnetic resonance images of the brain. Int. J. Mach. Learn. Cybern. 5(5), 659–669 (2013)
Antanas, L., van Otterlo, M., Mogrovejo, O., Antonio, J., Tuytelaars, T., De Raedt, L.: A relational distance-based framework for hierarchical image understanding. In: Proceedings of the 1st International Conference on Pattern Recognition Applications and Methods, vol. 2, pp. 206–218 (2012)
Antanas, L., Hoffmann, M., Frasconi, P., Tuytelaars, T., De Raedt, L.: A relational kernel-based approach to scene classification. In: 2013 IEEE Workshop on Applications of Computer Vision (WACV), pp. 133–139, IEEE (2013)
Riedel, S., McClosky, D., Surdeanu, M., McCallum, A., Manning, C.D.: Model combination for event extraction in bionlp 2011. In: Proceedings of the BioNLP Shared Task 2011 Workshop, Association for Computational Linguistics, pp. 51–55 (2011)
Dietterich, T.G.: Machine learning for sequential data: a review. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 15–30. Springer, Heidelberg (2002)
Graves, A., Liwicki, M., Bunke, H., Schmidhuber, J., Fernández, S.: Unconstrained on-line handwriting recognition with recurrent neural networks. In: Platt, J.C., Koller, D., Singer, Y., Roweis, S.T. (eds.) Advances in Neural Information Processing Systems 20, pp. 577–584. MIT Press, Cambridge (2007)
Liwicki, M., Bunke, H., et al.: HMM-based on-line recognition of handwritten whiteboard notes. In: Tenth International Workshop on Frontiers in Handwriting Recognition (2006)
Shivram, A., Zhu, B., Setlur, S., Nakagawa, M., Govindaraju, V.: Segmentation based online word recognition: a conditional random field driven beam search strategy. In: 2013 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 852–856, IEEE (2013)
Guberman, S.A., Lossev, I., Pashintsev, A.V.: Method and apparatus for recognizing cursive writing from sequential input information, 17 May 1994. US Patent 5,313,527
Li, X., Yeung, D.Y.: On-line handwritten alphanumeric character recognition using dominant points in strokes. Pattern Recogn. 30(1), 31–44 (1997)
Plamondon, R., Maarse, F.J.: An evaluation of motor models of handwriting. IEEE Trans. Syst. Man Cybern. 19(5), 1060–1072 (1989)
Parizeau, M., Plamondon, R.: A fuzzy-syntactic approach to allograph modeling for cursive script recognition. IEEE Trans. Pattern Anal. Mach. Intell. 17(7), 702–712 (1995)
Malaviya, A., Peters, L.: Fuzzy handwriting description language: Fohdel. Pattern Recogn. 33(1), 119–131 (2000)
Ziino, D., Amin, A., Sammut, C.: Recognition of hand printed Latin characters using machine learning. In: Proceedings of the Third International Conference on Document Analysis and Recognition 1995, vol. 2, pp. 1098–1102, IEEE (1995)
Amin, A., Sammut, C., Sum, K.: Learning to recognize hand-printed Chinese characters using inductive logic programming. Int. J. Pattern Recogn. Artif. Intell. 10(07), 829–847 (1996)
Manke, S., Finke, M., Waibel, A.: NPen++: a writer independent, large vocabulary on-line cursive handwriting recognition system. In: Proceedings of the Third International Conference on Document Analysis and Recognition 1995, vol. 1, pp. 403–408, August 1995
Neville, J., Jensen, D.: Relational dependency networks. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning. MIT Press, Cambridge (2007)
Domingos, P., Lowd, D.: Markov logic: an interface layer for artificial intelligence. Synth. Lect. Artif. Intell. Mach. Learn. 3(1), 1–155 (2009)
Kersting, K., De Raedt, L.: Bayesian logic programming: theory and tool. In: Getoor, L., Taskar, B. (eds.) Statistical Relational Learning, p. 291. MIT Press, Cambridge (2007)
Friedman, N., Getoor, L., Koller, D., Pfeffer, A.: Learning probabilistic relational models. In: IJCAI, vol. 99, pp. 1300–1309 (1999)
Singla, P., Domingos, P.: Discriminative training of Markov logic networks. In: AAAI, vol. 5, pp. 868–873 (2005)
Lowd, D., Domingos, P.: Recursive random fields. In: IJCAI, pp. 950–955 (2007)
Friedman, J.H.: Greedy function approximation: a gradient boosting machine. Ann. Stat. 29(5), 1189–1232 (2001)
Connell, S.D.: Online handwriting recognition using multiple pattern class models. Ph.D. thesis (2000)
Malaviya, A., Peters, L.: Fuzzy feature description of handwriting patterns. Pattern Recogn. 30(10), 1591–1604 (1997)
Galar, M., Fernández, A., Barrenechea, E., Bustince, H., Herrera, F.: An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recogn. 44(8), 1761–1776 (2011)
Shivram, A., Ramaiah, C., Setlur, S., Govindaraju, V.: IBM_UB_1: a dual mode unconstrained English handwriting dataset. In: Proceedings of the Twelfth International Conference on Document Analysis and Recognition 2013, pp. 13–17, (2013)
Guyon, I., Schomaker, L., Plamondon, R., Liberman, M., Janet, S.: Unipen project of on-line data exchange and recognizer benchmarks. In: Proceedings of the 12th IAPR International. Conference on Pattern Recognition 1994. Vol. 2-Conference B: Computer Vision &; Image Processing, vol. 2, pp. 29–33, IEEE (1994)
Liu, C.L., Sako, H., Fujisawa, H.: Performance evaluation of pattern classifiers for handwritten character recognition. Int. J. Doc. Anal. Recogn. 4(3), 191–204 (2002)
Zhu, B., Shivram, A., Setlur, S., Govindaraju, V., Nakagawa, M.: Online handwritten cursive word recognition using segmentation-free MRF in combination with P2DBMN-MQDF. In: 2013 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 349–353, IEEE (2013)
Cao, J., Shridhar, M., Kimura, F., Ahmadi, M.: Statistical and neural classification of handwritten numerals: a comparative study. In: 11th IAPR International Conference on Pattern Recognition 1992, vol. II. Conference B: Pattern Recognition Methodology and Systems, Proceedings, pp. 643–646, IEEE (1992)
SNNS toolkit. http://www.ra.cs.uni-tuebingen.de/SNNS/
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Shivram, A., Khot, T., Natarajan, S., Govindaraju, V. (2015). Statistical Relational Learning for Handwriting Recognition. In: Davis, J., Ramon, J. (eds) Inductive Logic Programming. Lecture Notes in Computer Science(), vol 9046. Springer, Cham. https://doi.org/10.1007/978-3-319-23708-4_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-23708-4_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23707-7
Online ISBN: 978-3-319-23708-4
eBook Packages: Computer ScienceComputer Science (R0)