Abstract
Biclustering is a thriving and of paramount task in many biomedical applications. Indeed, the biclusters aim, among-others, the discovery of unveiling principles of cellular organizations and functions, to cite but a few.
In this paper, we introduce a new algorithm called, BiARM, that aims to efficiently extract the most meaningful, low overlapping biclusters. The main originality of our algorithm stands in the fact that it relies on the extraction of generic association rules. The reduced set of association rules faithfully mimics relationships between sets of genes, proteins, or other cell members and gives important information for the analysis of diseases. The effectiveness of our method has been proved through extensive carried out experiments on real-life DNA microarray data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Which may be either monotone increasing, monotone decreasing, up-down or down-up, etc.
- 2.
Available at https://github.com/mehdi-kaytoue/trimax.
- 3.
Available at http://arep.med.harvard.edu/biclustering/.
- 4.
Available at http://arep.med.harvard.edu/biclustering/.
- 5.
Available at http://llama.mshri.on.ca/funcassociate/.
- 6.
The adjusted significance scores asses genes in each bicluster, which indicates how well they match with the different GO categories.
- 7.
Available at http://db.yeastgenome.org/cgi-bin/GO/goTermFinder .
- 8.
References
Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson, J.J., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Levy, R., Wilson, W., Grever, M.R., Byrd, J.C., Botstein, D., Brown, P.O., Staudt, L.M.: Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769), 503–511 (2000)
Ayadi, W.: Algorithmes Systematiques et Stochastiques de Biregroupement pour l’Analyse des Donnees Biopuces. Ph.D. thesis, University of Angers, France (2011)
Ayadi, W., Elloumi, M., Hao, J.K.: A biclustering algorithm based on a bicluster enumeration tree: application to dna microarray data. BioData Min. 2, 9 (2009)
Ayadi, W., Elloumi, M., Hao, J.K.: Bicfinder: a biclustering algorithm for microarray data analysis. Knowl. Inf. Syst. 30(2), 341–358 (2012)
Ayadi, W., Elloumi, M., Hao, J.K.: Bimine+: An efficient algorithm for discovering relevant biclusters of dna microarray data. Knowl.-Based Syst. 35, 224–234 (2012)
Ayadi, W., Elloumi, M., Hao, J.-K.: Iterated local search for biclustering of microarray data. In: Dijkstra, T.M.H., Tsivtsivadze, E., Marchiori, E., Heskes, T. (eds.) PRIB 2010. LNCS, vol. 6282, pp. 219–229. Springer, Heidelberg (2010)
Ben-Dor, A., Chor, B., Karp, R.M., Yakhini, Z.: Discovering local structure in gene expression data: The order-preserving submatrix problem. J. Comput. Biol. 10(3/4), 373–384 (2003)
Bergmann, S., Ihmels, J., Barkai, N.: Defining transcription modules using large-scale gene expression data. Bioinformatics 20(13), 1993–2003 (2004)
Berriz, G.F., King, O.D., Bryant, B., Sander, C., Roth, F.P.: Characterizing gene sets with funcassociate. Bioinformatics 19, 2502–2504 (2003)
Boutsinas, B.: A new biclustering algorithm based on association rule mining. Int. J. Artif. Intell. Tools 22(3) (2013). http://dx.doi.org/10.1142/S0218213013500176
Cheng, K.O., Law, N.F., Siu, W.C., Liew, A.W.C.: Identification of coherent patterns in gene expression data using an efficient biclustering algorithm and parallel coordinate visualization. BMC Bioinform. 210(9), 1282–1283 (2008)
Cheng, Y., Church, G.M.: Biclustering of expression data. In: Proceedings of ISMB, UC San Diego, California, pp. 93–103 (2000)
Cheng, Y., Church, G.M.: Biclustering of expression data. Technical report, supplementary information (2006)
Das, S., Idicula, S.M.: Application of cardinality based grasp to the biclustering of gene expression data. Int. J. Comput. Appl. 1, 44–53 (2010)
Divina, F., Aguilar-Ruiz, J.S.: A multi-objective approach to discover biclusters in microarray data. In: Genetic and Evolutionary Computation Conference, GECCO 2007, Proceedings, London, England, UK, July 7–11, 2007. pp. 385–392 (2007). http://doi.acm.org/10.1145/1276958.1277038
Divina, F., AguilarRuiz, J.S.: Biclustering of expression data with evolutionary computation. IEEE Trans. Knowl. Data Eng. 18(5), 590–602 (2006)
Freitas, A., Ayadi, W., Elloumi, M., Oliveira, L.J., Hao, J.K.: Survey on biclustering of gene expression data. In: Biological Knowledge Discovery Handbook: Preprocessing, Mining, and Postprocessing of Biological Data. pp. 591–608 (2013)
Gallo, C.A., Carballido, J.A., Ponzoni, I.: Microarray biclustering: a novel memetic approach based on the PISA platform. In: Pizzuti, C., Ritchie, M.D., Giacobini, M. (eds.) EvoBIO 2009. LNCS, vol. 5483, pp. 44–55. Springer, Heidelberg (2009)
Gasmi, G., Yahia, S.B., Nguifo, E.M., Slimani, Y.: \(\cal IGB\): a new informative generic base of association rules. In: Ho, T.-B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 81–90. Springer, Heidelberg (2005). http://dx.doi.org/10.1007/11430919_11
Jaccard, P.: Etude comparative de la distribution florale dans une portion des alpes et du jura. Bulletin de la socit Vaudoise des Siences Naturelles 37, 547–579 (1901)
Kaytoue, M., Kuznetsov, S.O., Macko, J., Napoli, A.: Biclustering meets triadic concept analysis. Ann. Math. Artif. Intell. 70(1–2), 55–79 (2014). http://dx.doi.org/10.1007/s10472-013-9379-1
Kaytoue, M., Kuznetsov, S.O., Napoli, A.: Biclustering Numerical Data in Formal Concept Analysis. In: Jäschke, R. (ed.) ICFCA 2011. LNCS, vol. 6628, pp. 135–150. Springer, Heidelberg (2011)
Liu, J., Li, Z., Hu, X., Chen, Y.: Biclustering of microarray data with MOSPO based on crowding distance. BMC Bioinform. 10(S-4) (2009). http://dx.doi.org/10.1186/1471-2105-10-S4-S9
Liu, J., Li, Z., Liu, F., Chen, Y.: Multi-objective particle swarm optimization biclustering of microarray data. In: 2008 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2008, 3–5 November 2008, Philadephia, Pennsylvania, USA, pp. 363–366 (2008). http://doi.ieeecomputersociety.org/10.1109/BIBM.2008.17
Luan, Y., Li, H.: Clustering of time-course gene expression data using a mixed-effects model with b-splines. Bioinformatics 19(4), 474–482 (2003)
Martínez, R., Pasquier, N., Pasquier, C.: Genminer: mining non-redundant association rules from integrated gene expression data and annotations. Bioinformatics 24(22), 2643–2644 (2008). http://dx.doi.org/10.1093/bioinformatics/btn490
Mitra, S., Banka, H.: Multi-objective evolutionary biclustering of gene expression data. Pattern Recogn. 39, 2464–2477 (2006)
Mondal, K.C., Pasquier, N.: Galois closure based association rule mining from biological data. In: Elloumi, M., Zomaya, A.Y. (eds.) Biological Knowledge Discovery Handbook: Preprocessing, Mining, and Postprocessing of Biological Data, pp. 761–802. Wiley, USA (2014)
Mondal, K.C., Pasquier, N., Mukhopadhyay, A., Maulik, U., Bandhopadyay, S.: A new approach for association rule mining and bi-clustering using formal concept analysis. In: Perner, P. (ed.) MLDM 2012. LNCS, vol. 7376, pp. 86–101. Springer, Heidelberg (2012)
Omiecinski, E.R.: Alternative interest measures for mining associations in databases. IEEE Trans. Knowl. Data Eng. 15, 57–69 (2003)
Peddada, S., Lobenhofer, E., Li, L., Afshari, C., Weinberg, C.: Gene selection and clustering for time-course and dose-response microarray experiments using order-restricted inference. Bioinformatics 19, 834–841 (2003)
Prelic, A., Bleuler, S., Zimmermann, P., Wille, A., Buhlmann, P., Gruissem, W., Hennig, L., Thiele, L., Zitzler, E.: A systematic comparison and evaluation of biclustering methods for gene expression data. Bioinformatics 22(9), 1122–1129 (2006)
Serin, A., Vingron, M.: Debi: discovering differentially expressed biclusters using a frequent itemset approach. Algorithms Mol. Biol. 6, 18–29 (2011). http://dx.doi.org/10.1186/1748-7188-6-18
Tanay, A., Sharan, R., Shamir, R.: Discovering statistically significant biclusters in gene expression data. Bioinformatics 18, S136–S144 (2002)
Teng, L., Chan, L.: Discovering biclusters by iteratively sorting with weighted correlation coefficient in gene expression data. J. Sig. Process. Syst. 50, 267–280 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Houari, A., Ayadi, W., Yahia, S.B. (2015). Discovering Low Overlapping Biclusters in Gene Expression Data Through Generic Association Rules. In: Bellatreche, L., Manolopoulos, Y. (eds) Model and Data Engineering. Lecture Notes in Computer Science(), vol 9344. Springer, Cham. https://doi.org/10.1007/978-3-319-23781-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-319-23781-7_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23780-0
Online ISBN: 978-3-319-23781-7
eBook Packages: Computer ScienceComputer Science (R0)