Abstract
Network anomalies have been a serious challenge for the Internet nowadays. In this paper, two new metrics, IGTE (Inter-group Traffic Entropy) and IGFE (Inter-group Flow Entropy), are proposed for network anomaly detection. It is observed that IGTE and IGFE are highly correlated and usually change synchronously when no anomaly occurs. However, once anomalies occur, this highly linear correlation would be destroyed. Based on this observation, we propose a linear regression model built upon IGTE and IGFE, to detect the network anomalies. We use both CERNET2 netflow data and synthetic data to validate the regression model and its corresponding detection method. The results show that the regression-based method works well and outperforms the well known wavelet-based detection method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrysiak, T., Saganowski, Å., ChoraÅ, M.: DDoS attacks detection by means of greedy algorithms. In: ChoraÅ, R.S. (ed.) Image Processing and Communications Challenges 4. AISC, vol. 184, pp. 301ā308. Springer, Heidelberg (2013)
Barford, P., Kline, J., Plonka, D., Ron, A.: A signal analysis of network traffic anomalies. In: Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurment, pp. 71ā82. ACM (2002)
The r project for statistical computing. http://www.r-project.org/
Cisco systems netflow services export version 9. http://www.rfc-base.org/rfc-3954.html
Brauckhoff, D., Salamatian, K., May, M.: Applying pca for traffic anomaly detection: Problems and solutions. In: INFOCOM 2009, pp. 2866ā2870. IEEE (2009)
Casella, G., Berger, R.L.: Statistical Inference. Duxbury Press, Belmont (1990)
Cong, F., Hautakangas, H., Nieminen, J., Mazhelis, O., Perttunen, M., Riekki, J., Ristaniemi, T.: Applying wavelet packet decomposition and one-class support vector machine on vehicle acceleration traces for road anomaly detection. In: Guo, C., Hou, Z.-G., Zeng, Z. (eds.) ISNN 2013, Part I. LNCS, vol. 7951, pp. 291ā299. Springer, Heidelberg (2013)
Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27(8), 861ā874 (2006)
Guzman, J., Poblete, B.: On-line relevant anomaly detection in the twitter stream: an efficient bursty keyword detection model. In: Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description, pp. 31ā39. ACM (2013)
Jamshed, M.A., Lee, J., Moon, S., Yun, I., Kim, D., Lee, S., Yi, Y., Park, K.: Kargus: a highly-scalable software-based intrusion detection system. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 317ā328. ACM (2012)
Jiang, D., Zhang, P., Xu, Z., Yao, C., Qin, W.: A wavelet-based detection approach to traffic anomalies. In: 2011 Seventh International Conference on Computational Intelligence and Security (CIS), pp. 993ā997. IEEE (2011)
Jiang, H., Zhang, G., Xie, G., Salamatian, K., Mathy, L.: Scalable high-performance parallel design for network intrusion detection systems on many-core processors. In: Proceedings of the Ninth ACM/IEEE Symposium on Architectures for Networking and Communications Systems, pp. 137ā146. IEEE Press (2013)
Kuzmanovic, A., Knightly, E.W.: Low-rate tcp-targeted denial of service attacks: the shrew vs. the mice and elephants. In: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 75ā86 (2003)
Lakhina, A., Crovella, M., Diot, C.: Diagnosing network-wide traffic anomalies. ACM SIGCOMM Comput. Commun. Rev. 34, 219ā230 (2004). ACM
Lakhina, A., Crovella, M., Diot, C.: Mining anomalies using traffic feature distributions. ACM SIGCOMM Comput. Commun. Rev. 35, 217ā228 (2005). ACM
Palmieri, F., Fiore, U.: Network anomaly detection through nonlinear analysis. Comput. Secur. 29(7), 737ā755 (2010)
Paxson, V.: Bro: a system for detecting network intruders in real-time. Comput. Netw. 31(23), 2435ā2463 (1999)
Ringberg, H., Soule, A., Rexford, J., Diot, C.: Sensitivity of PCA for traffic anomaly detection. ACM SIGMETRICS Perform. Eval. Rev. 35, 109ā120 (2007). ACM
Roesch, M., et al.: Snort: Lightweight intrusion detection for networks. In: LISA, pp. 229ā238 (1999)
Ross, S.M.: Introductory statistics. Academic Press (2010)
Rubinstein, B.I., Nelson, B., Huang, L., Joseph, A.D., Lau, S.h., Rao, S., Taft, N., Tygar, J.: Antidote: understanding and defending against poisoning of anomaly detectors. In: Proceedings of the 9th ACM SIGCOMM Conference on Internet Measurement Conference, pp. 1ā14. ACM (2009)
Silveira, F., Diot, C., Taft, N., Govindan, R.: Astute: detecting a different class of traffic anomalies. ACM SIGCOMM Comput. Commun. Rev. 40(4), 267ā278 (2010)
Simmross-Wattenberg, F., Asensio-Perez, J.I., Casaseca-de-la Higuera, P., Martin-Fernandez, M., Dimitriadis, I.A., Alberola-LĆ³pez, C.: Anomaly detection in network traffic based on statistical inference and alpha-stable modeling. IEEE Trans. Dependable Secure Comput. 8(4), 494ā509 (2011)
Soldo, F., Metwally, A.: Traffic anomly detection based on the IP size distribution. In: 2012 Proceedings IEEE INFOCOM, pp. 2005ā2013 (2012)
Vasiliadis, G., Polychronakis, M., Ioannidis, S.: Midea: a multi-parallel intrusion detection architecture. In: Proceedings of the 18th ACM Conference on Computer and Communications Security, pp. 297ā308. ACM (2011)
Wang, W., Lu, D., Zhou, X., Zhang, B., Mu, J.: Statistical wavelet-based anomaly detection in big data with compressive sensing. EURASIP J. Wireless Commun. Networking 2013(269), 1ā6 (2013)
Winter, P., Lampesberger, H., Zeilinger, M., Hermann, E.: On detecting abrupt changes in network entropy time series. In: De Decker, B., Lapon, J., Naessens, V., Uhl, A. (eds.) CMS 2011. LNCS, vol. 7025, pp. 194ā205. Springer, Heidelberg (2011)
Wu, J., Cui, Z., Shi, Y., Su, D.: Traffic flow anomaly detection based on wavelet denoising and support vector regression. J. Algorithms Comput. Technol. 7(2), 209ā226 (2013)
Yaacob, A.H., Tan, I.K., Chien, S.F., Tan, H.K.: Arima based network anomaly detection. In: Second International Conference on Communication Software and Networks. ICCSN 2010, pp. 205ā209. IEEE (2010)
Zhang, B., Yang, J., Wu, J., Qin, D., Gao, L.: Mcst: Anomaly detection using feature stability for packet-level traffic. In: 2011 13th Asia-Pacific Network Operations and Management Symposium (APNOMS), pp. 1ā8. IEEE (2011)
Zhang, B., Yang, J., Wu, J., Qin, D., Gao, L.: Pca-subspace method is it good enough for network-wide anomaly detection. In: 2012 IEEE Network Operations and Management Symposium (NOMS), pp. 359ā367. IEEE (2012)
Zhang, B., Yang, J., Wu, J., Wang, Z.: Mbst: detecting packet-level traffic anomalies by feature stability. Comput. J. 56(10), 1176ā1188 (2013)
Acknowledgments
We are grateful to Lujing Sun for providing us with the Netflow data from CERNET2, and to Kun Wen and Chenxi Li for many helpful discussions. We also thank anonymous reviewers for their constructive comments. This work is supported by the National Basic Research Program of China under Grant No. 2012CB315806, the National Natural Science Foundation of China under Grant No. 61170211, 61202356, 61161140454, Specialized Research Fund for the Doctoral Program of Higher Education under Grant No. 20110002110056, 20130002110058.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2015 Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Wang, Z., Yang, J., Li, F. (2015). A New Anomaly Detection Method Based on IGTE and IGFE. In: Tian, J., Jing, J., Srivatsa, M. (eds) International Conference on Security and Privacy in Communication Networks. SecureComm 2014. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 153. Springer, Cham. https://doi.org/10.1007/978-3-319-23802-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-319-23802-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23801-2
Online ISBN: 978-3-319-23802-9
eBook Packages: Computer ScienceComputer Science (R0)