Skip to main content

Survey on Visualization Layout for Big Data

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques (IScIDE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9243))

Abstract

A reasonable visualization is helpful for the representation and analysis of big data, and an optimal layout improves the effect of visualization and provides a nice and direct platform for visualization analysis. In this paper surveys visualization literatures focusing on graph topology structure analysis or optimal layout, especially on those for big data visualization. Typical algorithms are classified into four categories, namely parallel coordinates, scatter diagram, tree map and other layout. We also propose the feasible directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gorodov, E.Y., Gubarev, V.V.: Analytical review of data visualization methods in application to big data. J. Elec. Comp. Eng. 22(2–22), 2 (2013)

    Google Scholar 

  2. Sun, G.-D., Ying-Cai, W., Liang, R.H., Liu, S.X.: A survey of visual analytics techniques and applications: state-of-the-art research and future challenges. J. Comput. Sci. Technol. 28(5), 852–867 (2013)

    Article  Google Scholar 

  3. Debortoli, S., Mller, O., vom Brocke, J.: Vergleich von kompetenzanforderungen an business-intelligence- und big-data-spezialisten. WIRTSCHAFTSINFORMATIK 56(5), 315–328 (2014)

    Article  Google Scholar 

  4. Sugiyama, K., Shojiro, T.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cyber. 11(2), 109–125 (1981)

    Article  MathSciNet  Google Scholar 

  5. Sindre, G., Gulla, B., Jokstad, H.: Onion graphs: aesthetics and layout. In: Proceedings on Visual Languages, pp. 287–291 (1993)

    Google Scholar 

  6. Purchase, H., Cohen, R., James, M.: Validating graph drawing aesthetics. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  7. Ware, C., Purchase, H., Colpoys, L., Mcgill, M.: Cognitive measurements of graph aesthetics. Inf. Vis. 1, 103–110 (2002)

    Article  Google Scholar 

  8. Cui, W., Liu, S., Tan, L., Shi, C.: Textflow: Towards better understanding of evolving topics in text. TVCG 17(12), 2412–2421 (2011)

    Google Scholar 

  9. Cao, N., Lin, Y., Sun, X., Lazer, D., Liu, S., Qu, H.: Whisper: tracing the spatiotemporal process of information diffusion in real time. TVCG 18(12), 2649–2658 (2012)

    Google Scholar 

  10. Garey, M.R., Johnson, D.: Crossing number is np-complete. SIAM J. Algebraic Discrete Meth. 4(3), 312–316 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kle, M.: The crossing numbers of products of paths and stars with 4-vertex graphs. J. Graph Theo. 6, 605–614 (1994)

    MathSciNet  Google Scholar 

  12. Kle, M.: The crossing numbers of cartesian products of paths with 5-vertex graphs. Discrete Math. 233, 353–359 (2001)

    Article  MathSciNet  Google Scholar 

  13. Woodall, D.R.: Cyclic-order graphs and zarankiewicz’s crossing-number conjecture. J. Graph Theo. 6, 657–671 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kaufman, L., Rousseeuw, P.J.: Agglomerative Nesting (Program AGNES), pp. 199–252. Wiley, New York (2008)

    Google Scholar 

  16. de Abreu, N.M.M.: Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 1, 53–73 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ester, M., Kriegel, H-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. AAAI Press, pp. 226–231 (1996)

    Google Scholar 

  18. Wang, W., Yang, J., Muntz, R.: Sting : a statistical information grid approach to spatial data mining. In: VLDB, pp. 186–195 (1997)

    Google Scholar 

  19. Ma, K.L., Muelder, C.W.: Large-scale graph visualization and analytics. Computer 46(7), 39–46 (2013)

    Article  Google Scholar 

  20. Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Visualization, pp. 361–378 (1990)

    Google Scholar 

  21. Fua, Y.H., Ward, M.O., Rundensteiner, E.A.: Hierarchical parallel coordinates for exploration of large datasets. In: Visualization 1999, pp. 43–50 (1999)

    Google Scholar 

  22. Dasgupta, A., Chen, M., Kosara, R.: Conceptualizing visual uncertainty in parallel coordinates. Comput. Graph. Forum 31(3pt2), 1015–1024 (2012)

    Article  Google Scholar 

  23. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Upper Saddle River (1998)

    MATH  Google Scholar 

  24. Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  25. Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM Trans. Graph. 15(4), 301–331 (1996)

    Article  Google Scholar 

  26. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21(11), 1129–1164 (1991)

    Article  Google Scholar 

  27. Perer, A., Shneiderman, B.: Balancing systematic and flexible exploration of social networks. TVCG 12(5), 693–700 (2006)

    Google Scholar 

  28. Henry, N., Fekete, J.-D.: Matrixexplorer: a dual-representation system to explore social networks. TVCG 12(5), 677–684 (2006)

    Google Scholar 

  29. Zhu, B., Watts, S., Chen, H.: Visualizing social network concepts. Decis. Support Syst. 49(2), 151–161 (2010)

    Article  Google Scholar 

  30. Wu, P., Li, S.K.: Layout algorithm suitable for structural analysis and visualization of social network. J. Softw. 22(10), 2467–2475 (2011)

    Article  Google Scholar 

  31. Hadany, R., Harel, D.: A multi-scale algorithm for drawing graphs nicely. Discrete Appl. Math. 113, 3–21 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  32. Walshaw, C.: A multilevel algorithm for force-directed graph drawing. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 171–182. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  33. Hu, Y.: Efficient, high-quality force-directed graph drawing. Mathematica J. 10, 37–71 (2005)

    Google Scholar 

  34. Ho, Y., Gruhler, A., Heilbut, A., Bader, G., Moore, L., Adams, S., Millar, A., Taylor, P., Bennett, K., Boutilier, K.: Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002)

    Article  Google Scholar 

  35. Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, New York (2001)

    Book  MATH  Google Scholar 

  36. Zhao, S., McGuffin, M., Chignell, M.H.: Elastic hierarchies: combining treemaps and node-link diagrams. In: INFOVIS 2005, pp. 57–64 (2005)

    Google Scholar 

  37. Bederson, B.B., Shneiderman, B., Wattenberg, M.: Ordered and quantum treemaps: making effective use of 2d space to display hierarchies. ACM Trans. Graph. 21(4), 833–854 (2002)

    Article  Google Scholar 

  38. Becker, R., Eick, S., Wilks, A.: Visualizing network data. TVCG 1, 16–28 (1995)

    Google Scholar 

  39. Rekimoto, J., Green, M.: The information cube: Using transparency in 3d information visualization. In: WITS 1993 (1993)

    Google Scholar 

  40. Liu, S., Cui, W., Wu, Y., Liu, M.: A survey on information visualization: recent advances and challenges. Vis. Comput. 30(12), 1373–1393 (2014)

    Article  Google Scholar 

Download references

Acknowledgment

This research work is supported by National Natural Science Foundation of China with projects Nos. 61372190, 61370193, and 61331018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Teng, P., Li, H., Zhang, X. (2015). Survey on Visualization Layout for Big Data. In: He, X., et al. Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques. IScIDE 2015. Lecture Notes in Computer Science(), vol 9243. Springer, Cham. https://doi.org/10.1007/978-3-319-23862-3_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23862-3_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23861-6

  • Online ISBN: 978-3-319-23862-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics