Abstract
A reasonable visualization is helpful for the representation and analysis of big data, and an optimal layout improves the effect of visualization and provides a nice and direct platform for visualization analysis. In this paper surveys visualization literatures focusing on graph topology structure analysis or optimal layout, especially on those for big data visualization. Typical algorithms are classified into four categories, namely parallel coordinates, scatter diagram, tree map and other layout. We also propose the feasible directions for future research.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gorodov, E.Y., Gubarev, V.V.: Analytical review of data visualization methods in application to big data. J. Elec. Comp. Eng. 22(2–22), 2 (2013)
Sun, G.-D., Ying-Cai, W., Liang, R.H., Liu, S.X.: A survey of visual analytics techniques and applications: state-of-the-art research and future challenges. J. Comput. Sci. Technol. 28(5), 852–867 (2013)
Debortoli, S., Mller, O., vom Brocke, J.: Vergleich von kompetenzanforderungen an business-intelligence- und big-data-spezialisten. WIRTSCHAFTSINFORMATIK 56(5), 315–328 (2014)
Sugiyama, K., Shojiro, T.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cyber. 11(2), 109–125 (1981)
Sindre, G., Gulla, B., Jokstad, H.: Onion graphs: aesthetics and layout. In: Proceedings on Visual Languages, pp. 287–291 (1993)
Purchase, H., Cohen, R., James, M.: Validating graph drawing aesthetics. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer, Heidelberg (1996)
Ware, C., Purchase, H., Colpoys, L., Mcgill, M.: Cognitive measurements of graph aesthetics. Inf. Vis. 1, 103–110 (2002)
Cui, W., Liu, S., Tan, L., Shi, C.: Textflow: Towards better understanding of evolving topics in text. TVCG 17(12), 2412–2421 (2011)
Cao, N., Lin, Y., Sun, X., Lazer, D., Liu, S., Qu, H.: Whisper: tracing the spatiotemporal process of information diffusion in real time. TVCG 18(12), 2649–2658 (2012)
Garey, M.R., Johnson, D.: Crossing number is np-complete. SIAM J. Algebraic Discrete Meth. 4(3), 312–316 (1983)
Kle, M.: The crossing numbers of products of paths and stars with 4-vertex graphs. J. Graph Theo. 6, 605–614 (1994)
Kle, M.: The crossing numbers of cartesian products of paths with 5-vertex graphs. Discrete Math. 233, 353–359 (2001)
Woodall, D.R.: Cyclic-order graphs and zarankiewicz’s crossing-number conjecture. J. Graph Theo. 6, 657–671 (1993)
Pothen, A., Simon, H.D., Liou, K.P.: Partitioning sparse matrices with eigenvectors of graphs. SIAM J. Matrix Anal. Appl. 11(3), 430–452 (1990)
Kaufman, L., Rousseeuw, P.J.: Agglomerative Nesting (Program AGNES), pp. 199–252. Wiley, New York (2008)
de Abreu, N.M.M.: Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 1, 53–73 (2007)
Ester, M., Kriegel, H-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. AAAI Press, pp. 226–231 (1996)
Wang, W., Yang, J., Muntz, R.: Sting : a statistical information grid approach to spatial data mining. In: VLDB, pp. 186–195 (1997)
Ma, K.L., Muelder, C.W.: Large-scale graph visualization and analytics. Computer 46(7), 39–46 (2013)
Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visualizing multi-dimensional geometry. In: Visualization, pp. 361–378 (1990)
Fua, Y.H., Ward, M.O., Rundensteiner, E.A.: Hierarchical parallel coordinates for exploration of large datasets. In: Visualization 1999, pp. 43–50 (1999)
Dasgupta, A., Chen, M., Kosara, R.: Conceptualizing visual uncertainty in parallel coordinates. Comput. Graph. Forum 31(3pt2), 1015–1024 (2012)
Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Upper Saddle River (1998)
Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)
Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM Trans. Graph. 15(4), 301–331 (1996)
Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exper. 21(11), 1129–1164 (1991)
Perer, A., Shneiderman, B.: Balancing systematic and flexible exploration of social networks. TVCG 12(5), 693–700 (2006)
Henry, N., Fekete, J.-D.: Matrixexplorer: a dual-representation system to explore social networks. TVCG 12(5), 677–684 (2006)
Zhu, B., Watts, S., Chen, H.: Visualizing social network concepts. Decis. Support Syst. 49(2), 151–161 (2010)
Wu, P., Li, S.K.: Layout algorithm suitable for structural analysis and visualization of social network. J. Softw. 22(10), 2467–2475 (2011)
Hadany, R., Harel, D.: A multi-scale algorithm for drawing graphs nicely. Discrete Appl. Math. 113, 3–21 (2001)
Walshaw, C.: A multilevel algorithm for force-directed graph drawing. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 171–182. Springer, Heidelberg (2001)
Hu, Y.: Efficient, high-quality force-directed graph drawing. Mathematica J. 10, 37–71 (2005)
Ho, Y., Gruhler, A., Heilbut, A., Bader, G., Moore, L., Adams, S., Millar, A., Taylor, P., Bennett, K., Boutilier, K.: Systematic identification of protein complexes in saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002)
Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer, New York (2001)
Zhao, S., McGuffin, M., Chignell, M.H.: Elastic hierarchies: combining treemaps and node-link diagrams. In: INFOVIS 2005, pp. 57–64 (2005)
Bederson, B.B., Shneiderman, B., Wattenberg, M.: Ordered and quantum treemaps: making effective use of 2d space to display hierarchies. ACM Trans. Graph. 21(4), 833–854 (2002)
Becker, R., Eick, S., Wilks, A.: Visualizing network data. TVCG 1, 16–28 (1995)
Rekimoto, J., Green, M.: The information cube: Using transparency in 3d information visualization. In: WITS 1993 (1993)
Liu, S., Cui, W., Wu, Y., Liu, M.: A survey on information visualization: recent advances and challenges. Vis. Comput. 30(12), 1373–1393 (2014)
Acknowledgment
This research work is supported by National Natural Science Foundation of China with projects Nos. 61372190, 61370193, and 61331018.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Teng, P., Li, H., Zhang, X. (2015). Survey on Visualization Layout for Big Data. In: He, X., et al. Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques. IScIDE 2015. Lecture Notes in Computer Science(), vol 9243. Springer, Cham. https://doi.org/10.1007/978-3-319-23862-3_38
Download citation
DOI: https://doi.org/10.1007/978-3-319-23862-3_38
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-23861-6
Online ISBN: 978-3-319-23862-3
eBook Packages: Computer ScienceComputer Science (R0)