Skip to main content

Multiview Correlation Feature Learning with Multiple Kernels

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques (IScIDE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9243))

  • 2836 Accesses

Abstract

Recent researches have shown the necessity to consider multiple kernels rather than a single fixed kernel in real-world applications. The learning performance can be significantly improved if multiple kernel functions or kernel matrices are considered. Motivated by the recent progress, in this paper we present a multiple kernel multiview correlation feature learning method for multiview dimensionality reduction. In our proposed method, the input data of each view are mapped into multiple higher dimensional feature spaces by implicitly nonlinear mappings. Three experiments on face and handwritten digit recognition have demonstrated the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html.

References

  1. Horst, P.: Relations among m sets of measures. Psychometrika 26, 129–149 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  2. Kettenring, J.R.: Canonical analysis of several sets of variables. Biometrika 58, 433–451 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer, New York (2002)

    MATH  Google Scholar 

  4. Hotelling, H.: Relations between two sets of variates. Biometrika 28, 321–377 (1936)

    Article  MATH  Google Scholar 

  5. Li, Y.O., Adali, T., Wang, W., Calhoun, V.D.: Joint blind source separation by multiset canonical correlation analysis. IEEE Trans. Sig. Process. 57, 3918–3929 (2009)

    Article  MathSciNet  Google Scholar 

  6. Correa, N.M., Eichele, T., Adali, T., Li, Y.O., Calhoun, V.D.: Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI. NeuroImage 50, 1438–1445 (2010)

    Article  Google Scholar 

  7. Nielsen, A.A.: Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data. IEEE Trans. Image Process. 11, 293–305 (2002)

    Article  Google Scholar 

  8. Thompson, B., Cartmill, J., Azimi-Sadjadi, M.R., Schock, S.G.: A multichannel canonical correlation analysis feature extraction with application to buried underwater target classification. In: Proceedings of International Joint Conference on Neural Networks, pp. 4413–4420 (2006)

    Google Scholar 

  9. Takane, Y., Hwang, H.: Regularized multiple-set canonical correlation analysis. Psychometrika 73, 753–775 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Su, Y., Fu, Y., Gao, X., Tian, Q.: Discriminant learning through multiple principal angles for visual recognition. IEEE Trans. Image Process. 21, 1381–1390 (2012)

    Article  MathSciNet  Google Scholar 

  11. Yuan, Y.-H., Sun, Q.-S.: Fractional-order embedding multiset canonical correlations with applications to multi-feature fusion and recognition. Neurocomputing 122, 229–238 (2013)

    Article  Google Scholar 

  12. Rupnik, J., Shawe-Taylor, J.: Multi-view canonical correlation analysis. In: SiKDD (2010). http://ailab.ijs.si/dunja/SiKDD2010/Papers/Rupnik_Final.pdf

  13. Yuan, Y.-H., Sun, Q.-S., Zhou, Q., Xia, D.-S.: A novel multiset integrated canonical correlation analysis framework and its application in feature fusion. Pattern Recogn. 44, 1031–1040 (2011)

    Article  MATH  Google Scholar 

  14. Jing, X., Li, S., Lan, C., Zhang, D., Yang, J., Liu, Q.: Color image canonical correlation analysis for face feature extraction and recognition. Sig. Process. 91, 2132–2140 (2011)

    Article  MATH  Google Scholar 

  15. Shen, X.B., Sun, Q.S., Yuan, Y.H.: A unified multiset canonical correlation analysis framework based on graph embedding for multiple feature extraction. Neurocomputing 148, 397–408 (2015)

    Article  Google Scholar 

  16. Yan, F., Kittler, J., Mikolajczyk, K., Tahir, A.: Non-sparse multiple kernel fisher discriminant analysis. J. Mach. Learn. Res. 13, 607–642 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Lin, Y.-Y., Liu, T.-L., Fuh, C.-S.: Multiple kernel learning for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 33, 1147–1160 (2011)

    Article  Google Scholar 

  18. Schölkopf, B., Smola, A., Müller, K.-R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10, 1299–1319 (1998)

    Article  Google Scholar 

  19. Chu, M.T., Watterson, J.L.: On a multivariate eigenvalue problem: i. algebraic theory and power method. SIAM J. Sci. Comput. 14, 1089–1106 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, Z., Chen, S., Sun, T.: MultiK-MHKS: a novel multiple kernel learning algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 30, 348–353 (2008)

    Article  Google Scholar 

  21. Yuan, Y.-H., Sun, Q.-S.: Graph regularized multiset canonical correlations with applications to joint feature extraction. Pattern Recogn. 47, 3907–3919 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Science Foundation of China under Grant Nos. 61402203, 61273251, and 61305017, and the Fundamental Research Funds for the Central Universities under Grant No. JUSRP11458.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Hao Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yuan, YH., Shen, XB., Xiao, ZY., Yang, JL., Ge, HW., Sun, QS. (2015). Multiview Correlation Feature Learning with Multiple Kernels. In: He, X., et al. Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques. IScIDE 2015. Lecture Notes in Computer Science(), vol 9243. Springer, Cham. https://doi.org/10.1007/978-3-319-23862-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23862-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23861-6

  • Online ISBN: 978-3-319-23862-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics