Skip to main content

CRF-TM: A Conditional Random Field Method for Predicting Transmembrane Topology

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques (IScIDE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9243))

Abstract

Transmembrane proteins are important for cell transport biology and in the treatment of disease. Understanding the helix count and locations in transmembrane proteins is a key problem for structural and functional analyses. But there is a lack of high resolution three-dimensional structures. In this study, we propose a method based on conditional random fields for predicting the helix count and locations, CRF-TM, which reflects long-range correlations in the full-length sequence as joint probabilities. Two datasets are employed in the performance validation. Our results show that CRF-TM can rank the first group better compared with other widely used TM predictors. The results obtained by CRF-TM are also used to predict the three-dimensional structures of GPCRs, which is crucial drug targets and also a subclass of transmembrane with seven spanning α-helices.

This paper is supported by grants no. 61170125, 61202290 under the National Natural Science Foundation of China (http://www.nsfc.gov.cn) and grants no. BK20131154 under Natural Science Foundation of Jiangsu Province.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hediger, M.A., Clémençon, B., Burrier, R.E., et al.: The ABCs of membrane transporters in health and disease (SLC series): introduction. Mol. Aspects Med. 34(2), 95–107 (2013)

    Article  Google Scholar 

  2. Coskun, Ü., Simons, K.: Cell membranes: the lipid perspective. Structure 19(11), 1543–1548 (2011)

    Article  Google Scholar 

  3. Bill, R.M., Henderson, P.J.F., Iwata, S., et al.: Overcoming barriers to membrane protein structure determination. Nat. Biotechnol. 29(4), 335–340 (2011)

    Article  Google Scholar 

  4. Yu, D., Wu, X., Shen, H., Yang, J.: Enhancing membrane protein subcellular localization prediction by parallel fusion of multi-view features. IEEE Trans. Nanobiosci. 11(4), 375–385 (2012)

    Article  Google Scholar 

  5. Sonnhammer, E.L.L., Von Heijne, G., Krogh, A.: A hidden Markov model for predicting transmembrane helices in protein sequences. Ismb 6, 175–182 (1998)

    Google Scholar 

  6. Tusnady, G.E., Simon, I.: Principles governing amino acid composition of integral membrane proteins: application to topology prediction. J. Mol. Biol. 283(2), 489–506 (1998)

    Article  Google Scholar 

  7. Rost, B., Casadio, R., Fariselli, P., et al.: Transmembrane helices predicted at 95 % accuracy. Protein Sci. Publ. Protein Soc. 4(3), 521 (1995)

    Article  Google Scholar 

  8. Nugent, T., Jones, D.T.: Transmembrane protein topology prediction using support vector machines. BMC Bioinform. 10(1), 159 (2009)

    Article  Google Scholar 

  9. Viklund, H., Elofsson, A.: OCTOPUS: improving topology prediction by two-track ANN-based preference scores and an extended topological grammar. Bioinformatics 24(15), 1662–1668 (2008)

    Article  Google Scholar 

  10. Hopf, T., Colwell, L., Sheridan, R., et al.: Three-dimensional structures of membrane proteins from genomic sequencing. Cell 149(7), 1607–1621 (2012)

    Article  Google Scholar 

  11. Lafferty J., McCallum A., Pereira F.C.N.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML 2001 (2001)

    Google Scholar 

  12. Li, M., Lin, L., Wang, X., et al.: Protein–protein interaction site prediction based on conditional random fields. Bioinformatics 23(5), 597–604 (2007)

    Article  Google Scholar 

  13. Wang, L., Sauer, U.H.: OnD-CRF: predicting order and disorder in proteins conditional random fields. Bioinformatics 24(11), 1401–1402 (2008)

    Article  Google Scholar 

  14. Ikeda, M., Arai, M., Okuno, M., Shimizu, T.: Toshio: TMPDB: a database of experimentally-characterized transmembrane topologies. Nucleic Acids Res. 31(1), 406–409 (2003)

    Article  Google Scholar 

  15. Arai, M., Mitsuke, H., Ikeda, M., et al.: ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res. 32, W390–W393 (2004)

    Article  Google Scholar 

  16. Lukas, K., Anders, K., Erik, L.L.S.: A combined transmembrane topology and signal peptide prediction method. J. Mol. Biol. 338, 1027–1036 (2004)

    Article  Google Scholar 

  17. Nugent, T., Jones, D.T.: Transmembrane protein topology prediction using support vector machines. BMC Bioinform. 10, 159 (2009)

    Article  Google Scholar 

  18. Kozma, D., Simon, I., Tusnady, G.E.: PDBTM: protein data bank of transmembrane proteins after 8 years. Nucleic Acids Res. 1–6 (2012)

    Google Scholar 

  19. Wu, H., Lü, Q., Quan, L., Qian, P.: PatGPCR: a multitemplate approach for improving 3D structure prediction of transmembrane helices of G-protein-coupled receptors. Article ID 486125 (2013). doi:10.1155/2013/486125

  20. Wu, H., Lü, Q., Quan, L., et al.: Modeling the structural topology and predicting the three-dimensional structure for transmembrane helixes of GPCR. Chin. J. Comput. 10, 2168–2178 (2013)

    MathSciNet  Google Scholar 

  21. Cai, D., He, X.F.: Manifold adaptive experimental design for text categorization. IEEE Trans. Knowl. Data Eng. 24(4), 707–719 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This paper is supported by grants no. 61170125, 61202290 under the National Natural Science Foundation of China (http://www.nsfc.gov.cn) and grants no. BK20131154 under Natural Science Foundation of Jiangsu Province. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the paper. The authors thank Jin Wang and Shimin Chen for helping with the analysis of the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Lu, W., Fu, B., Wu, H., Lü, Q., Wang, K., Jiang, M. (2015). CRF-TM: A Conditional Random Field Method for Predicting Transmembrane Topology. In: He, X., et al. Intelligence Science and Big Data Engineering. Big Data and Machine Learning Techniques. IScIDE 2015. Lecture Notes in Computer Science(), vol 9243. Springer, Cham. https://doi.org/10.1007/978-3-319-23862-3_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23862-3_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23861-6

  • Online ISBN: 978-3-319-23862-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics