Skip to main content

High Dynamic Range Image Rendering with a Luminance-Chromaticity Independent Model

  • Conference paper
  • First Online:
Intelligence Science and Big Data Engineering. Image and Video Data Engineering (IScIDE 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9242))

Abstract

High dynamic range image (HDR) is widely used since it is capable of capturing more fine information. However, problems remain in its display. A good rendering of HDR color images requires careful treatment of both the brightness and chromaticity information. In this work, we first prove that the global logarithmic mapping of the R, G, B channels may result in desaturation. We then propose an improved way for HDR image rendering. Specifically, by keeping the chromaticity fixated, we use a global transformation and the Retinex-based adaptive filter only in the brightness channel. We finally transfer them back to the RGB space after combining the new brightness and the original chromaticity together. Our model works well in keeping the chromaticity information. Global mapping only in the brightness channel is a good way to avoid desaturation. In addition, our model ensures a good independence between brightness and chromaticity. By applying our method on HDR images, the details in both dark areas and bright areas can be well displayed with better appearance in hue and saturation.

S. Gao and W. Han—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Choi, D.H., Jang, I.H., Kim, M.H., Kim, N.C.: Color image enhancement using single-scale retinex based on an improved image formation model. In: Proceedings of the EUSIPCO (2008)

    Google Scholar 

  2. Devlin, K.: A review of tone reproduction techniques. Technical report, Computer Science, University of Bristol, CSTR-02-005 (2002)

    Google Scholar 

  3. Drago, F., Myszkowski, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. Comput. Graph. Forum. 22, 419–426 (2003). Wiley Online Library

    Article  Google Scholar 

  4. Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Trans. Graph. (TOG) 21, 249–256 (2002)

    Article  Google Scholar 

  5. Fu, X., Sun, Y., LiWang, M., Huang, Y., Zhang, X.P., Ding, X.: A novel retinex based approach for image enhancement with illumination adjustment. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1190–1194. IEEE (2014)

    Google Scholar 

  6. Funt, B., McCann, J., Ciurea, F.: Retinex in matlab. J. Electron. Imag. 13(1), 48–57 (2004)

    Article  Google Scholar 

  7. Gao, S., Han, W., Yang, K., Li, C., Li, Y.: Efficient color constancy with local surface reflectance statistics. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014, Part II. LNCS, vol. 8690, pp. 158–173. Springer, Heidelberg (2014)

    Google Scholar 

  8. Gao, S., Li, Y.: A retinal mechanism based color constancy model. In: Liu, C.-L., Zhang, C., Wang, L. (eds.) CCPR 2012. CCIS, vol. 321, pp. 422–429. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Gao, S., Yang, K., Li, C., Li, Y.: A color constancy model with double-opponency mechanisms. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 929–936. IEEE (2013)

    Google Scholar 

  10. Gao, S., Yang, K., Li, C., Li, Y.: Color constancy using double-opponency. IEEE Trans. Pattern Anal. Mach. Intell. (2015) (in press). doi:10.1109/TPA-MI.2015.2396053

  11. Hood, D.C., Finkelstein, M.A.: Sensitivity to light. In: Boff, K.R., Kaufman, L., Thomas, J.P. (eds.) Handbook of Perception and Human Performance. Sensory Processes and Perception, vol. 1. Wiley, New York (1986)

    Google Scholar 

  12. Horn, B.K.: Determining lightness from an image. Comput. Graph. Image Process. 3(4), 277–299 (1974)

    Article  Google Scholar 

  13. Jobson, D.J., Rahman, Z.U., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  14. Kimmel, R., Elad, M., Shaked, D., Keshet, R., Sobel, I.: A variational framework for retinex. Int. J. Comput. Vis. 52(1), 7–23 (2003)

    Article  MATH  Google Scholar 

  15. Land, E.H., McCann, J.: Lightness and retinex theory. JOSA 61(1), 1–11 (1971)

    Article  Google Scholar 

  16. Meylan, L., Susstrunk, S.: High dynamic range image rendering with a retinex-based adaptive filter. IEEE Trans. Image Process. 15(9), 2820–2830 (2006)

    Article  Google Scholar 

  17. Pattanaik, S.N., Ferwerda, J.A., Fairchild, M.D., Greenberg, D.P.: A multiscale model of adaptation and spatial vision for realistic image display. In: Proceedings of the 25th annual conference on Computer graphics and interactive techniques, pp. 287–298. ACM (1998)

    Google Scholar 

  18. Rahman, Z.U., Jobson, D.J., Woodell, G.A.: Retinex processing for automatic image enhancement. J. Electron. Imag. 13(1), 100–110 (2004)

    Article  Google Scholar 

  19. Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Trans. Graph. (TOG) 21, 267–276 (2002)

    Article  Google Scholar 

  20. Webster, M.A.: Human colour perception and its adaptation. Netw. Comput. Neural Syst. 7(4), 587–634 (1996)

    Article  MATH  Google Scholar 

  21. Yang, K., Gao, S., Li, C., Li, Y.: Efficient illuminant estimation for color constancy using grey pixels. In: 2015 IEEE Conference on CVPR, pp. 1–10 (2015)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the 973 Project under Grant 2013CB329401 and the NSFC under Grant 61375115, 91420105. The work was also supported by the 111 Project of China (B12027).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongjie Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gao, S., Han, W., Ren, Y., Li, Y. (2015). High Dynamic Range Image Rendering with a Luminance-Chromaticity Independent Model. In: He, X., et al. Intelligence Science and Big Data Engineering. Image and Video Data Engineering. IScIDE 2015. Lecture Notes in Computer Science(), vol 9242. Springer, Cham. https://doi.org/10.1007/978-3-319-23989-7_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23989-7_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23987-3

  • Online ISBN: 978-3-319-23989-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics