Abstract
Recently, the authors presented a novel approach to computing resolutions and Betti numbers using Pommaret bases. For Betti numbers, this algorithm is for most examples much faster than the classical methods (typically by orders of magnitude). As the problem of δ-regularity often makes the determination of a Pommaret basis rather expensive, we extend here our algorithm to Janet bases. Although in δ-singular coordinates, Janet bases may induce larger resolutions than the corresponding Pommaret bases, our benchmarks demonstrate that this happens rarely and has no significant effect on the computation costs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Abbott, J., Bigatti, A.: CoCoALib 0.99535: a C++ library for doing computations in commutative algebra (2014). http://cocoa.dima.unige.it/cocoalib
Albert, M., Fetzer, M., Sáenz-de Cabezón, E., Seiler, W.: On the free resolution induced by a Pommaret basis. J. Symb. Comp. 68, 4–26 (2015)
Albert, M., Hashemi, A., Pytlik, P., Schweinfurter, M., Seiler, W.: Deterministic genericity for polynomial ideals. Preprint in preparation (2015)
Decker, W., Greuel, G.M., Pfister, G., Schönemann, H.: Singular 4-0-2 – a computer algebra system for polynomial computations (2012). http://www.singular.uni-kl.de
Gerdt, V., Blinkov, Y.: Involutive bases of polynomial ideals. Math. Comp. Simul. 45, 519–542 (1998)
Gerdt, V., Blinkov, Y.: Minimal involutive bases. Math. Comp. Simul. 45, 543–560 (1998)
Grayson, D., Stillman, M.: Macaulay2 1.6, a software system for research in algebraic geometry (2013). http://www.math.uiuc.edu/Macaulay2/
Hausdorf, M., Sahbi, M., Seiler, W.: δ- and quasi-regularity for polynomial ideals. In: Calmet, J., Seiler, W., Tucker, R. (eds.) Global Integrability of Field Theories, pp. 179–200. Universitätsverlag Karlsruhe, Karlsruhe (2006)
Jöllenbeck, M., Welker, V.: Minimal Resolutions via Algebraic Discrete Morse Theory. Memoirs Amer. Math. Soc. 197, Amer. Math. Soc. (2009)
Schreyer, F.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstraßschen Divisionssatz. Master’s thesis, Fakultät für Mathematik, Universität Hamburg (1980)
Seiler, W.: A combinatorial approach to involution and δ-regularity I: Involutive bases in polynomial algebras of solvable type. Appl. Alg. Eng. Comm. Comp. 20, 207–259 (2009)
Seiler, W.: A combinatorial approach to involution and δ-regularity II: Structure analysis of polynomial modules with Pommaret bases. Appl. Alg. Eng. Comm. Comp. 20, 261–338 (2009)
Seiler, W.: Involution – The Formal Theory of Differential Equations and its Applications in Computer Algebra. Algorithms and Computation in Mathematics, vol. 24. Springer-Verlag, Berlin (2010)
Sköldberg, E.: Morse theory from an algebraic viewpoint. Trans. Amer. Math. Soc. 358, 115–129 (2006)
Sköldberg, E.: Resolutions of modules with initially linear syzygies. Preprint arXiv:1106.1913 (2011)
Yanovich, D., Blinkov, Y., Gerdt, V.: Benchmarking (2001). http://invo.jinr.ru/ginv/benchmark.html
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Albert, M., Fetzer, M., Seiler, W.M. (2015). Janet Bases and Resolutions in CoCoALib . In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2015. Lecture Notes in Computer Science(), vol 9301. Springer, Cham. https://doi.org/10.1007/978-3-319-24021-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-319-24021-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24020-6
Online ISBN: 978-3-319-24021-3
eBook Packages: Computer ScienceComputer Science (R0)