Skip to main content

Piecewise-Quadratics and Reparameterizations for Interpolating Reduced Data

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9301))

Included in the following conference series:

Abstract

This paper tackles the problem of interpolating reduced data \(Q_m=\{q_i\}_{i=0}^m\) obtained by sampling an unknown curve γ in arbitrary euclidean space. The interpolation knots \({\cal T}_m= \{t_i\}_{i=0}^m\) satisfying γ(t i ) = q i are assumed to be unknown (non-parametric interpolation). Upon selecting a specific numerical scheme \(\hat \gamma\) (here a piecewise-quadratic \(\hat \gamma=\hat \gamma_2\)), one needs to supplement Q m with knots’ estimates \(\{\hat t_i\}_{i=0}^m\approx\{t_i\}_{i=0}^m\). A common choice of \(\{\hat t_i^{\lambda}\}_{i=0}^m\) (λ ∈ [0,1]) frequently used in curve modeling and data fitting (e.g. in computer graphics and vision or in computer aided design) is called exponential parameterizations (see, e.g., [11] or [16]). Recent results in [8]and [14] show that \(\hat \gamma_2\) combined with exponential parameterization yields (in trajectory estimation) either linear α(λ) = 1 (λ ∈ [0,1)) or cubic α(1) = 3 convergence orders, once Q m gets progressively denser. The asymtototics proved in [8] relies on the extra assumptions requiring \(\hat \gamma_2\) to be reparameterizable to the domain of γ. Indeed, as shown in [14], a natural candidate ψ for such a reparameterization meets this criterion only for λ = 1, whereas the latter (see [8]) may not hold for the remaining λ ∈ [0,1) (which e.g. brings difficulty in length estimation of γ by using \(\hat \gamma\)). Our paper fills out this gap and establishes sufficient conditions imposed on \({\cal T}_m\) to render ψ a genuine reparameterization with λ ∈ [0,1) (see Th. 4). The derivation of a such a condition involves theoretical analysis and symbolic computation, and this constitutes a novel contribution of the present work. The numerical tests verifying whether ψ indeed is a reparameterization (for λ ∈ [0,1) and for more-or-less uniform samplings \({\cal T}_m\)) are also performed. The sharpness of the asymptotics in question is additionally confirmed with the aid of numerical tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Boor, C.: A Practical Guide to Splines. Springer-Verlag, Heidelberg (2001)

    Google Scholar 

  2. Epstein, M.P.: On the influence of parameterization in parametric interpolation. SIAM J. Numer. Anal. 13, 261–268 (1976)

    Google Scholar 

  3. Farin, G.: Curves and Surfaces for Computer Aided Geometric Design, 3rd edn. Academic Press, San Diego (1993)

    Google Scholar 

  4. Floater, M.S.: Chordal cubic spline interpolation is fourth order accurate. IMA J. Numer. Anal. 26, 25–33 (2006)

    Google Scholar 

  5. Janik, M., Kozera, R., Kozioł, P.: Reduced data for curve modeling - applications in graphics, computer vision and physics. Advances in Science and Technology 7(18), 28–35 (2013)

    Google Scholar 

  6. Kocić, L.M., Simoncelli, A.C., Della Vecchia, B.: Blending parameterization of polynomial and spline interpolants, Facta Universitatis (NIŠ). Series Mathematics and Informatics 5, 95–107 (1990)

    Google Scholar 

  7. Kozera, R.: Curve modeling via interpolation based on multidimensional reduced data. Studia Informatica 25(4B–61), 1–140 (2004)

    Google Scholar 

  8. Kozera, R., Noakes, L.: Piecewise-quadratics and exponential parametereziation for reduced data. Appl. Math. Comput. 221, 1–19 (2013)

    Google Scholar 

  9. Kozera, R., Noakes, L.: C 1 interpolation with cumulative chord cubics. Fundamenta Informaticae 61(3–4), 285–301 (2004)

    Google Scholar 

  10. Kozera, R., Noakes, L.: Exponential parameterization and ε-uniformly sampled reduced data. Applied Mathematics and Information Sciences. Accepted for publication

    Google Scholar 

  11. Kvasov, B.I.: Methods of Shape-Preserving Spline Approximation. World Scientific Publishing Company, Singapore (2000)

    Google Scholar 

  12. Lee, E.T.Y.: Choosing nodes in parametric curve interpolation. Computer-Aided Design 21(6), 363–370 (1989)

    Google Scholar 

  13. Mørken, K., Scherer, K.: A general framework for high-accuracy parametric interpolation. Math. Comput. 66(217), 237–260 (1997)

    Google Scholar 

  14. Noakes, L., Kozera, R.: Cumulative chords piecewise-quadratics and piecewise-cubics. In: Klette, R., Kozera, R., Noakes, L., Weickert, J. (eds.) Geometric Properties of Incomplete Data, Computational Imaging and Vision, vol. 31, pp. 59–75. Kluver Academic Publishers, The Netherlands (2006)

    Google Scholar 

  15. Noakes, L., Kozera, R., Klette, R.: Length estimation for curves with different samplings. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Digital and Image Geometry. LNCS, vol. 2243, pp. 339–351. Springer, Heidelberg (2002)

    Google Scholar 

  16. Piegl, L., Tiller, W.: The NURBS Book. Springer-Verlag, Heidelberg (1997)

    Google Scholar 

  17. Wolfram Mathematica 9, Documentation Center. http://reference.wolfram.com/mathematica/guide/Mathematica.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Kozera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kozera, R., Noakes, L. (2015). Piecewise-Quadratics and Reparameterizations for Interpolating Reduced Data. In: Gerdt, V., Koepf, W., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2015. Lecture Notes in Computer Science(), vol 9301. Springer, Cham. https://doi.org/10.1007/978-3-319-24021-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24021-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24020-6

  • Online ISBN: 978-3-319-24021-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics