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Abstract. We develop a new theory for treating boundary problems
for linear ordinary differential equations whose fundamental system may
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1 Introduction

The treatment of boundary problems in symbolic computation was initiated
in the PhD thesis [8] under the guidance of Bruno Buchberger in cooperation
with Heinz Engl; see also [10,9] and for the further development [11,7,12]. Its
implementation was originally carried out within the TH∃OREM∀ project [1].

Up to now, we have always assumed differential equations without singularity
or, equivalently, monic differential operators (leading coefficient function being
unity). In this paper, we develop for the first time an algebraic theory for treating
boundary problems with a (mild) singularity at one endpoint. For details, we
refer to Section 3. Our approach is very different from the traditional analysis
setting in terms of the Weyl-Titchmarsh theory (limit points and limit circles).
It would be very interesting to explore the connections between our approach
and the classical treatment; however, this must be left for future work.

Regarding the general setup of the algebraic language for boundary problems,
we refer to the references mentioned above, in particular [12]. At this point,
let us just recall some notation. We start from a fixed integro-differential al-
gebra (F , ∂,

r
). The formulation of (local) boundary conditions is in terms of

evaluations, which are by definition multiplicative linear functionals in F∗. We
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write F1 ≤ F2 if F1 is a subspace of F2; the same notation is used for subspaces
of the dual space F∗. The orthogonal of a subspace B ≤ F∗ is defined as

B⊥ = {u ∈ F | β(u) = 0 for all β ∈ B}

and similarly for the orthogonal of a subspace A ≤ F . We write [f1, f2, . . . ]
for the linear span of (possibly infinitely many) elements f1, f2, · · · ∈ F ; the
same notation is used for linear spans within F∗. The zero vector space of any
dimension is denoted by O.

We write

nk = n(n− 1) · · · (n− k + 1)

for the falling factorial, where n ∈ C could be arbitrary (but will be an integer for
our purposes) while k is taken to be a natural number. Note that nk = 0 for k >
n. Our main example of an integro-differential algebra will be the space Cω(I)
of analytic functions on a closed interval I = [a, b]. Recall that by definition this
is the space of functions that are analytic in some open set containing [a, b].

The development of the new algebraic theory of two-point boundary prob-
lems with a mild singularity (whose treatment is really just broached in this
paper) was triggered by a collaboration between a symbolic computation team
(consisting of the first, second and fourth author) and a researcher in engineering
mechancs (the third author). This underlines the importance and fruitfulness of
collaborations between theoretical developments and practical applications. We
present the example that had originally led to this research in Section 4.

From a methodological point of view, this research on the symbolic algorithm
for linear boundary value problems has particular relevance and is drawing from
the Theorema Project, see [1]. This project aims at supporting a new paradigm
for doing (algorithmic) mathematical research: In the phase of doing research
on new theorems and algorithms, TH∃OREM∀ provides a formal language (a
version of predicate logic) and an automated reasoning system by which the
exploration of the theory is supported. In the phase in which algorithms based
on the new theory should be implemented and used in computing examples,
TH∃OREM∀ allows to program and execute the algorithms in the same lan-
guage. In the particular case of our approach to solving linear boundary value
problems, the fundamental theorem on which the approach is based was proved
automatically by checking that the rewrite rules for integro-differential opera-
tors forms a Gröbner basis. In a second step, the algorithm for solving linear
boundary value problems is expressed again in the TH∃OREM∀ language and
can then be called by the users by inputting the linear boundary value problems
in a user-friendly notation.

In its current version, the engine for solving boundary problems is bundled
in the GreenGroebner package of TH∃OREM∀. As an example, consider the
boundary problem

u′′ + 1
xu
′ − 1

x2u = f,
u(0) = u(1) = 0,
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which we shall consider in greater detail in Section 2. This can be given to
TH∃OREM∀ in the form

BPSolve

[
u′′ + 1

x
u′ − 1

x2
u = f

u[0] = u[1] = 0
, u, x, 0, 1

]

leading either to the solution for u(x) as

−1
2

1

x

(
x2
∫ 1

0

f[ξ] dξ − x2
∫ x

0

f[ξ] dξ − x2
∫ 1

0

ξ2f[ξ] dξ +

∫ x

0

ξ2f[ξ] dξ

)
or to the Green’s function g(x, ξ) as{

1
2
1
x

(−1 + x2) ξ2 ⇐ ξ ≤ x
1
2
x (−1 + ξ2) ⇐ x < ξ

at the user’s request.
In addition to the GreenGroebner package in TH∃OREM∀, a Maple package

named IntDiffOp is also available [5]. This package was developed in the frame
of Anja Korporal’s PhD thesis, supervised by Georg Regensburger and the first
author. The Maple package supports also generalized boundary problems (see
Section 2 for their relevance to this paper). One advantage of the TH∃OREM∀
system is that both the research phase and the application phase of our method
can be formulated and supported within the same logic and software system—
which we consider to be quite a novel and promising paradigm for the future.

2 A Simple Example

For illustrating the new ideas, it is illuminating to look at a simple example that
exhibits the kind of phenomena that we have to cope with in the Kirchhoff plate
boundary problem.

Example 1. Let us start with the intuitive but mathematically unprecise state-
ment of the following example: Given a “suitable” forcing function f on the unit
interval I = [0, 1], we want to find a “reasonable” solution function u such that

u′′ + 1
xu
′ − 1

x2u = f,
u(0) = u(1) = 0.

(1)

But note that the differential operator T = D2 + 1
xD −

1
x2 is singular at the

left boundary point x = 0 of the interval I under consideration. Hence the first
boundary condition u(0) = 0 should be looked at with some suspicion. And what
function space are we supposed to consider in the first place? If the 1

x and 1
x2 are

to be taken literally, the space C∞[0, 1] will clearly not do. On the other hand,
we need functions that are smooth (or at least continuous) at x = 0 to make
sense of u(0).
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In the rest of this section, we shall give one possible solution to the dilemma
outlined above. Of course we could resort to using different function space for u
and f , and this is in fact the approach one usually takes in Analysis. For our
present purposes, however, we prefer to keep the simple paradigm of integro-
differential algebras as outlined in Section 1, but we shall modify it to accom-
modate singularities such as in 1

x and 1
x2 . Note that these are just poles, so we

can take F to be the subring of the field M(I) consisting of complex-valued
meromorphic functions that are regular at all x ∈ I except possibly x = 0. In
other words, these are functions that have a Laurent expansion at x = 0 with
finite principal part, converging in a complex annulus 0 < |z| < ρ with ρ > 1.
In fact, we will only use the real part [−1, 1] \ {0} of this annulus. Note that we
have of course 1

x ,
1
x2 ∈ F .

The ring F is an integro-differential algebra over C if we use the standard
derivation ∂ = d

dx and the Rota-Baxter operator
r
f :=

r x
1
f(ξ) dξ

initialized at the regular point x = 1.
We have now ensured that the differential operator of (1) has a clear algebraic

interpretation T ∈ F [∂]. However, the boundary condition u(0) = 0 is still
dubious. For making it precise, note that the integro-differential algebra (F , ∂,

r
)

has only the second of the two boundary evaluations L,R : F → C with L(f) =
f(0) and R(f) = f(1) in the usual sense of a total function. So while we can
interpret the second boundary condition algebraically by Ru = 0, the same
does not work on the left endpoint. Instead of an evaluation at x = 0 we shall
introduce the map

pp:

∞∑
n=N

anx
n 7→

−1∑
n=N

anx
n

that extracts the principal part of a function written in terms of its Laurent
expansion at x = 0. Here and henceforth we assume such expansions of nonzero
functions are written with aN 6= 0. If N ≥ 0 the function is regular at x = 0,
and the above sum is to be understood as zero. Clearly, pp: F → F is a linear
projector, with the complementary projector reg := 1F − pp extracting the
regular part at x = 0. Incidentially, pp and reg are also Rota-Baxter operators of
weight −1, which play a crucial role in the renormalization theory of perturbative
quantum field theory [3, Ex. 1.1.10].

Finally, we define the functional C : F → C that extracts the constant
term a0 of a meromorphic function expanded at x = 0. Combining C with the
monomial multiplication operators, we obtain the coefficient functionals 〈xn〉 :=
Cx−n (n ∈ Z) that map

∑
n anx

n to an. In particular, the residue functional is
given by 〈x−1〉 = Cx.

Note that for functions regular at x = 0, the functional C coincides with
the evaluation at the left endpoint, L : F → C, f 7→ f(0). However, for general
meromorphic functions, L is undefined and C is not multiplicative since for
example C(x · 1x ) = 1 6= 0 = C(x)C( 1

x ). Hence we refer to C only as a functional
but not as an evaluation.
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We can now make the boundary condition u(0) = 0 precise for our setting
over F . What we really mean is that λ(u) = 0, where λ := pp+C is the projector
that extracts the principal part together with the constant term. Extending the
algebraic notion of boundary problem to allow for boundary conditions that are
not functionals, we may thus view (1) as (D2 + 1

xD −
1
x2 , [λ,R]⊥). In this way

we have given a precise meaning to the formulation of the boundary problem.
But how are we to go about its solution in a systematic manner? Let us first

look at the adhoc standard method way of doing this—determining the general
homogeneous solution, then add the inhomogeneous solution via variation of con-
stants, and finally adapt the integration constants to accommodate the boundary
conditions. In our case, one sees immediately that Ker(T ) = [x, 1x ] so that the
general solution of the homogeneous differential equation is u(x) = c1x + c2

x ,
where c1, c2 ∈ C are integration constants. Variation of constants [2, p. 74] then
yields

u(x) = c1x+
c2
x

+

∫ x

1

(x
2
− ξ2

2x

)
f(ξ) dξ (2)

for the inhomogeneous solution. Note that f ∈ F may also have singularities
as x = 0 or any other point x ∈ I apart from x = 1.

Now we need to impose the boundary conditions. From u(1) = 0 we obtain
immediately c1+c2 = 0. For the boundary condition at x = 0 we have to proceed
a bit more cautiously, obtaining

u(0) = lim
x→0

(
c1x+

c2
x

+
x

2

∫ x

1

f(ξ) dξ − 1

2x

∫ x

1

ξ2f(ξ) dξ
)

= lim
x→0

(c2
x
− 1

2x

∫ x

1

ξ2f(ξ) dξ
)

where we assume that f is regular at 0. It is clear that the remaining limit can
only exist if the integral tends to a finite limit as x → 0, and this is the case
by our assumption on f . But then we may apply the boundary condition to

obtain c2 = 1
2

r 0

1
ξ2f(ξ) dξ = − 1

2

r 1

0
ξ2f(ξ) dξ. This gives the overall solution

u(x) =

(
x

2

∫ 1

0

ξ2 − 1

2x

∫ 1

0

ξ2 − x

2

∫ 1

x

+
1

2x

∫ 1

x

ξ2
)
f(ξ) dξ, (3)

which one may write in the standard form u(x) =
r 1

0
g(x, ξ) f(ξ) dξ where the

Green’s function is defined as

g(x, ξ) =

{
xξ2

2 −
ξ2

2x if ξ ≤ x
xξ2

2 −
x
2 if ξ ≥ x

(4)

in the usual manner.
How are we to make sense of this in an algebraic way, i.e. without (explicit)

use of limits and hence topology? The key to this lies in the projector pp and
the functional L, which serve to distill into our algebraic setting what we need
from the topology (namely f(x) = (pp f)(x) + O(1) as x → 0). However, there
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is another complication when compared to boundary problems without singu-
larities as presented in Section 1: We cannot expect a solution u ∈ F to (1) for
every given forcing function f ∈ F . In other words, this boundary problem is
not regular in the sense of [11].

In the past, we have also used the term singular boundary problem for such
situations (here this seems to be suitable in a double sense but we shall be careful
to separate the second sense by sticking to the designation “boundary problems
with singularities”). The theory of singular boundary problems was developed
in an abstract setting in [4]; applications to boundary problems (without singu-
larities) have been presented in [5]. At this point we shall only recall a few basic
facts.

A boundary problem (T,B) is called semi-regular if Ker(T ) ∩ B⊥ = O.
It is easy to see that the boundary problem (D2 + 1

xD −
1
x2 , [λ,R]⊥) is in

fact semi-regular. Since any u ∈ Ker(T ) can be written as u(x) = c1x + c2
x ,

the condition Ru = 0 implies c2 = −c1 and hence u(x) = c1(x − 1
x ). But

then (λu)(x) = − c1x = 0 forces c1 = 0 and hence u = 0.
If (D2 + 1

xD −
1
x2 , [λ,R]⊥) were a regular boundary problem, we would

have Ker(T ) u [λ,R]⊥ = F . However, it is easy to see that there are ele-
ments u ∈ F that do not belong to Ker(T ) + [λ,R]⊥, for example u(x) = 1

x2 .
Hence we conclude that the boundary problem (1) is in fact overdetermined. For
such boundary problems (T,B) one can always select a regular subproblem (T, B̃),
in the sense that B̃ < B. In our case, a natural choice is B̃ = [〈x−1〉, R]. This is
regular since the evaluation matrix

(〈x−1〉, R)( 1
x , x) =

(
1 0
1 1

)
is regular, and the associated kernel projector is P = 1

x 〈x
−1〉 + x (R − 〈x−1〉)

by [7, Lem. A.1].
For making the boundary problem (1) well-defined on F we need one more

ingredient: We have to fix a complement E of T (B⊥), the so-called exceptional
space. Intuitively speaking, this comprises the “exceptional functions” of F that
we decide to discard in order to render (1) solvable. Let us first work out
what T (B⊥) ≤ F looks like. Since u(x) =

∑∞
n≥N anx

n ∈ B⊥ forces the princi-
pal part and constant term to vanish, we may start from u(x) =

∑
n>0 anx

n,
with the additional proviso that

∑
n>0 an = 1. Applying T = D2 + 1

xD −
1
x2 to

this u(x) yields
∑
n>1 an (n2 − 1)xn−2, which represents an arbitrary element

of Cω(I) = [pp]⊥ for a suitable choice of coefficients (an)n>1 since the addi-
tional condition

∑
n>0 an = 1 can always be met by choosing a1 = 1−

∑
n>1 an.

But then it is very natural to choose E = [reg]⊥ as the required complement.
Clearly, the elements of this space E are the Laurent polynomials of C[ 1x ] without
constant term.

By Prop. 2 of [5], the Green’s operator of a generalized boundary prob-
lem (T,B, E) is given by G = G̃Q, where G̃ is the Green’s operator of some
regular subproblem (T, B̃) andQ is the projector onto T (B⊥) along E . In our case,
the latter projector is clearly Q = reg, while the Green’s operator G̃ = (1−P )T♦
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by [11, Thm. 26], with the kernel projector P as above and the fundamental right
inverse T♦ given according to [11, Prop. 23] by

T♦ = 1
2 A1x− 1

2x A1x
2,

which is essentially just a reformulation of the inhomogeneous part in (2). Fol-
lowing the style of [9] we write here

r x
1

as A1 ∈ F [∂,
r

] to emphasize its role

in the integro-differential operator ring. Similarly, we write F := −LA1 =
r 1

0
for the definite integral over the full interval I, which we may regard as a linear
functional Cω(I)→ C.

Putting things together, it remains to compute

G = (1− P )T♦Q =
(
1− 1

x 〈x
−1〉+ x 〈x−1〉 − xR

)
( 1
2 A1x− 1

2x A1x
2) reg

=
(
− x

2A1 + 1
2x A1x

2 − 1
2x Fx

2 + x
2 Fx

2
)
reg,

which may be done by the usual rewrite rules [11, Tbl. 1] for the operator
ring F [∂,

r
], together with the obvious extra rules that on Im(reg) = Cω(I) the

residual 〈x−1〉 vanishes and C = 〈x0〉 coincides with the evaluation L at zero.
Using the standard procedure for extracting the Green’s function, one obtains
exactly (4) when restricting the forcing functions to f ∈ Cω(I). We have thus
succeeded in applying the algebraic machinery to regain the solution previoulsy
determined by analysis techniques. More than that: The precise form of accessible
forcing functions is now fully settled, whereas the regularity assumption in (3)
was left somewhat vague (a sufficient condition whose necessity was left open).

3 Two-Point Boundary Problems with One Singularity

Let us now address the general question of specifying and solving boundary
problems (as usual: relative to a given fundamental system) that have only one
singularity. The case of multipliple singularities is left for future investigations.
Using a scaling transformation (and possibly a reflection), we may thus assume
the same setting as in Section 2, with the singularity at the origin and the other
boundary point at 1.

For the scope of this paper, we shall also restrict ourselves to a certain sub-
class of Stieltjes boundary problems (T,B): First of all, we shall allow only
local boundary conditions in B. This means multi-point conditions and higher-
order derivatives (leading to ill-posed boundary problems with distributional
Green’s functions) are still allowed, but no global parts (integrals); for details
we refer to [13, Def. 1]. The second restriction concerns the differential oper-
ator T ∈ C(x)[∂], which we require to be Fuchsian without resonances. The
latter means the differential equation Tu = 0 is of Fuchsian type (the singu-
larity is regular), and has fundamental solutions xλ1ϕ1(x), . . . , xλnϕn(x) with
each ϕi ∈ Cω(I) having order 0, where λ1, . . . , λn are the roots of the indicial
equation [2, p. 127]. In other words, we do not require logarithms for the solu-
tions. (A sufficient—but not necessary—condition for this is that the roots λi
are all distinct and do not differ by integers.)
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Definition 2. We call (T,B) a boundary problem with mild singularity if T ∈
C(x)[∂] is a nonresonant Fuchsian operator and B a local boundary space.

For a fixed (T,B), we shall then enlarge the function space F of Section 2
by adding xµ1 , . . . , xµn as algebra generators, where each µi is the fractional
part of the corresponding indicial root λi. Every element of F is then a sum of
series xµ

∑
n≥N anx

n, with µ ∈ {µ1, . . . , µn} and N ∈ Z. The integro-differential

structure on (F , ∂,
r

) is determined by setting ∂xµ = λi x
µ−1, as usual, and by

using for
r

the integral
r x
1

as we did also in Section 2.

As boundary functionals in B, we admit derivatives eξD
l (0 < ξ ≤ 1, l ≥ 0)

and coefficient functionals 〈xk+µ〉 (k ∈ Z) whose action is xµ
∑
n≥N anx

n 7→ ak.

For functions f ∈ Cω(I) we have of course 〈xk+µ〉xµf = f (k)(0)/k!. Since the
projectors reg and pp can be expressed in terms of the coefficient functionals,
we shall henceforth regard the latter just as convenient abbrevations; boundary
spaces are always written in terms of eξ and 〈xk〉 only but of course they can be
infinite-dimensional. For example, in Section 2 we had the “regularized boundary
condition” λ(u) = 0, which is equivalent to Lu = 0 and pp(u) = 0 and hence
to 〈xk〉u = 0 (k ≤ 0). Its full boundary space is therefore B = [R, 〈xk〉 | k ≤ 0].

The first issue that we must now address is the choice of suitable boundary
conditions: Unlike in the “smooth case” (without singularities), we may not be
able to impose n boundary conditions for an n-th order differential equation.
The motivating example of Section 2 was chosen to be reasonably similar to
the smooth case, so the presence of a singularity was only seen in replacing
the boundary evaluation L by its regularized version λ. As explained above, we
were effectively adding the extra condition pp(u) = 0 to the standard boundary
conditions u(0) = u(1) = 0. In other cases, this will not do as the following
simple example shows.

Example 3. Consider the nonresonant Fuchsian differential equation Tu(x) :=
u′′+ 4

x u
′+ 2

x2 u = 0. Note that here the indicial equation has the roots λ1 = −2
and λ2 = −1, which differ by the integer 1. Nevertheless, we may take { 1x ,

1
x2 }

as a fundamental system, so T is indeed nonresonant.
Trying to impose the same (regularized) boundary space B̃ = [pp, L,R] as in

Example 1, one obtains

T (B̃⊥) =
{ ∞∑
n=−1

bnx
n |

∞∑
n=−1

bn
(n+3)(n+4) = 0

}
after a short calculation. But this means that the forcing functions f in the
boundary problem

u′′ + 4
x u
′ + 2

x2 u = f
pp(u) = u(0) = u(1) = 0

must satisfy an awkward extra condition (viz. the one on the right-hand side
of T (B̃⊥) above). This is not compensated by the slightly enlarged generality of
allowing f to have a simple pole at x = 0.
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In the present case, we could instead impose initial conditions at 0 so that B̃ =
[pp, L, LD]. In this case one gets T (B̃⊥) = Cω(I), so there is a unique solution
for every analytic forcing function.

For a given nonresonant Fuchsian operator T ∈ C(x)[∂], a better approach
appears to be the following (we will make this more precise below):

1. We compute first some boundary functionals β1, . . . , βn that ensure a reg-
ular subproblem (T,B) with Bn := [β1, . . . , βn]. Adding extra conditions
(vanishing of all 〈xk+µi〉 for sufficiently small k) we obtain a boundary
space B = Bn + · · · such that (T,B) is semi-regular.

2. If a particular boundary condition is desired, it may be “traded” against one
of the βi; if this is not possible, it can be “annexed” to the extra conditions.
After these amendments, the subproblem (T,Bn) is still regular, and (T,B)
still semi-regular.

3. Next we compute the corresponding accessible space T (B⊥). This space
might not contain Cω(I), as we saw in Example 3 above when we insisted
on the conditions u(0) = u(1).

4. We determine a complement E of T (B⊥) as exceptional space in (T,B, E).

Once these steps are completed, we have a regular generalized boundary
problem (T,B, E) whose Green’s operator G can be computed much in the same
way as in Section 2. In detail, we get G = G̃Q, where G̃ is the Green’s operator
of the regular subproblem (T,Bn) and Q the projector onto T (B⊥) along E . As
we shall see, the operators G and Q can be computed as in the usual setting [11].
Let us first address Step 1 of the above program.

Lemma 4. Let T ∈ C(x)[∂] be a nonresonant Fuchsian differential operator of
order n. Then there exists a fundamental system u1, . . . , un ∈ F of T and n
coefficient functionals β1 := 〈xµ1+k1〉, . . . , βn := 〈xµn+kn〉 ordered as k1 + µ1 <
· · · < kn + µn so that β(u) ∈ Cn×n is a lower unitriangular matrix.

Proof. We start from an arbitrary fundamental system

u1 = xµ1

∑
k≥k1

a1,kx
k, . . . , un = xµn

∑
k≥kn

ak≥knx
k

of the Fuchsian operator T , where we take µ1, . . . , µn fracational as before and
we may assume that a1,k1 , . . . , an,kn = 1 so that each fundamental solution ui
has order ki. (The order of a series u = xµ

∑
k≥N ak x

k is defined as the small-

est integer k such that 〈xk〉u 6= 0.) We order the fundamental solutions such
that k1+µ1 ≤ · · · ≤ kn+µn. We can always achieve strict inequalities as follows.
If i < n is the first place where ki+µi = ki+1+µi+1 we must also have µi = µi+1

since 0 ≤ µi, µi+1 < 1. Therefore we have ki = ki+1, and we can replace ui+1

by ui+1−ui and make it monic so as to ensure ki +µi < ki+1 +µi+1. Repeating
this process at most n−1 times we obtain k1+µ1 < · · · < kn+µn. Choosing now
the boundary functionals β1 := 〈xµ1+k1〉, . . . , βn := 〈xµn+kn〉 as in the statement
of the lemma, we have clearly βi(ui) = 1 and βi(uj) = 0 for j > i as claimed.



10 M. Rosenkranz, J. Liu, A. Maletzky and B. Buchberger

In particular we see that En := (β1, . . . , βn)(u1, . . . , un) has unit determi-
nant, so it is regular. Setting Bn := [β1, . . . , βn], we obtain a regular boundary
problem (T,Bn). Note that some of the µi may coincide. For each µ ∈ M :=
{µ1, . . . , µn} let kµ be the smallest of the ki with µ = µi. We expand the n bound-
ary functionals by suitable curbing constraints to the full boundary space

B := Bn + [〈xk+µ〉 | µ ∈M, k < kµ] (5)

since the inhomogeneous solutions should be at least as smooth (in the sense of
pole order) as the homogeneous ones. Note that (T,B) is clearly a semi-regular
boundary problem. This achieves Step 1 in our program.

Now for Step 2. Suppose we want to impose a boundary condition β, assuming
it is of the type discussed above (composed of derivatives eξD

l and coefficient
functionals 〈xk+µ〉 for fractional parts µ of indicial roots). We must distinguish
two cases:

Trading. If the row vector r := β(ui)i=1,...,n ∈ Cn is nonzero, we can ex-
press it as a C-linear combination c1r1 + · · · + cnrn of the rows r1, . . . , rn
of En. Let k be the largest index such that ck 6= 0. Then we may express rk
as a C-linear combination of r and the remaining rows ri (i 6= k), hence
we may exchange βk with β without destroying the regularity of En =
(β1, . . . , βn)(u1, . . . , un).

Annexation. Otherwise, we have Ker(T ) ≤ β⊥. Together with Ker(T )uB⊥n =
F this implies

(
[β] ∩ Bn

)⊥ = β⊥+B⊥n = F and hence β 6∈ Bn by the identities
of [7, App. A]. Furthermore, Lemma 4.14 of [4] yields

T (Bn + β⊥) = T (B⊥n ∩ β⊥) = T (B⊥n ) ∩ T (β⊥) = T (β⊥)

since we have T (B⊥n ) = F from the regularity of (T,B). But this means that
adding β to B as a new boundary condition necessarily cuts down the space
of accessible functions unless β happens to be in the span of the curbing
constraints 〈xk+µ〉 ∈ B added to Bn in (5).

In the sense of the above discussion (see Example 3), the first case signifies a
“natural” choice of boundary condition while the second case means we insist
on imposing an extra condition (unless it is a redundant curbing constraint).
Repeating these steps as the cases may be, we can successively impose any
(finite) number of given boundary conditions. This completes Step 2.

For Step 3 we require the computation of the accessible space T (B⊥). We
shall now sketch how this can be done algorithmically, starting with a finitary
description of the admissible space B⊥ as given in the next proposition. The proof
is unfortunately somewhat tedious and long-wided but the basic idea is simple
enough: We substitute a series ansatz into the boundary conditions specified
in B to determine a number of lowest-order coefficients. The rest is just some
bureaucracy for making sure that everything works out (most likely this could
also be done in a more effective way).
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Proposition 5. Let (T,B) be a semi-regular boundary problem of order n with
mild singularity such that (T,Bn) is a regular subproblem. Let M = {µ1, . . . , µn}
be the fractional parts of the indicial roots for T . Then we have a direct decom-
position of the admissible space B⊥ =

⊕
µ∈M xµAµ with components

Aµ = [pµ1(x), . . . , pµ lµ(x)] + Pµ
(
Cω(I)M

)
(µ ∈M). (6)

Here pµ1(x), . . . , pµ lµ(x) ∈ C[x, 1x ] are linearly independent Laurent polynomials
and the linear operators Pµ : Cω(I)M → Cω(I) are defined by

Pµ
(
b(x)

)
= xjµbµ(x) +

∑
ν∈M

∑
ξ,j

qµνξj(x) eξD
j(bν),

with jµ ∈ Z and Laurent polynomials qµνξj(x) ∈ C[x, 1x ], almost all of which
vanish over the summation range 0 < ξ ≤ 1 and j ≥ 0.

Proof. Any element u ∈ F may be written in the form

u =
∑
µ∈M

∞∑
k=k(µ)

aµ,k x
k+µ,

where the k(µ) ∈ Z are a priori arbitrary. However, because of the curbing
constraints of B in (5) we may assume k(µ) = kµ for u ∈ B⊥. Let us write B+
for the extra conditions that were “annexed” at Step 2 (if none were added
then clearly B+ = O); thus B is a direct sum of Bn and B+ and the curbing
constraints. If sµ denotes the largest integer such that 〈xs+µ〉 occurs in any
condition of Bn +B+ and if we set rµ := sµ + 1 +µ, we can also write u ∈ B⊥ as

u =
∑
µ∈M

sµ∑
k=kµ

aµkx
k+µ +

∑
µ∈M

xrµ bµ(x), (7)

where the bµ(x) ∈ Cω(I) are convergent power series. Next we impose the con-
ditions β ∈ Bn + B+ on u. But each β is a C-linear combintions of coefficient
functionals 〈xk+µ〉 with u 7→ aµk and derivatives eξD

l (0 < ξ ≤ 1, l ≥ 0) whose
action on u yields

∑
µ

∑
k

aµk (k + µ)l ξk+µ−l +
∑
µ

l∑
j=0

(
l
j

)
r
j
µ ξ

rµ−j b(l−j)µ (ξ),

Hence β(u) yields a C-linear combination of the aµk and the b
(j)
µ (ξ). We compile

the coefficients aµk ∈ C into a column vector â ∈ CS of size S :=
∑
µ(sµ−kµ+1),

consisting of |M | contiguous blocks of varying size sµ−kµ+1. Putting the (finite)
set Ξ of evaluation points occurring in Bn+B+ into ascending order, we compile
also the derivatives bµ(ξ), b′µ(ξ), . . . into a column vector b̂ ∈ CT of size T :=∑
µ tµ, consisting of |M | contiguous blocks, each holding tµ derivatives b

(j)
µ (ξ) for



12 M. Rosenkranz, J. Liu, A. Maletzky and B. Buchberger

a fixed µ ∈M and certain ξ ∈ Ξ and j ≥ 0. Assuming Bn+B+ has dimension R,
the boundary conditions β(u) = 0 for β ∈ Bn + B+ can be written as

Ââ = B̂b̂ (8)

for suitable matrices Â ∈ CR×S and B̂ ∈ CR×T that can be computed from the
boundary functionals β ∈ Bn + B+.

Regarding the right-hand side as given, let us now put (8) into row echelon
form (retaining the same letters for simplicity). If the resulting system contains
any rows that are zero on the left but nonzero on the right, this signals constraints
amongst the bµ(x) whose treatment is postponed until later. For the moment we
discard such rows as well rows that are zero on both sides. Let U ≤ R be the
number of the remaining rows and p1, . . . , pU the pivot positions and V := S−U
the number of free parameters. Then we can solve (8) in the form â = ã+Ã ·CV .

Here ã ∈ CS is the vector with entry (B̂b̂)j in row pj and zero otherwise, and Ã ∈
CS×V consists of the non-pivot columns of the corresponding padded matrix
(its j-th row is the i-th row of Â for pivot indices j = pi, and −ej for non-
pivot indices j). Writing the free parameters as v̂ = (v1, . . . , vV ) ∈ CV , we may
substitute this solution â into the ansatz (7) to obtain

u =
∑
µ∈M

sµ∑
k=kµ

aµk(v̂, b̂)xk+µ +
∑
µ∈M

xrµ bµ(x), (9)

where the aµk(v̂, b̂) are C-linear combinations of the free parameters v̂ and the

derivatives b
(j)
µ (ξ) comprising b̂. Note that we may regard the aµk(. . . ) as row

vectors in C1×(V+T ) whose entries are computed from Â and B̂.
We turn now to the issue of constraints amongst the bµ(x), embodied in those

rows of the reduced row echelon form of (8) that are zero on the left-hand side
but nonzero on the right-hand side. We put the corresponding block of B̂ into
reduced row echelon form (again retaining the same letters for simplicity). Let µ′

the smallest µ occurring in any such row. Then each of the rows containing a
derivative b

(j)
µ′ (x) provides a constraint of the form∑

ξ∈Ξ

∑
j

cξj b
(j)
µ′ (ξ) +

∑
ξ∈Ξ

∑
µ>µ′

∑
j

cξµj b
(j)
µ (ξ) = 0, (10)

where the cξj , cξµj ∈ C are determined by B̂, and with finite sums over j. Let the

number of such constraints be X. Collecting the
(
b
(j)
µ′ (ξ)

)
ξ,l into a vector b̂µ′ ∈

CY of size Y := tµ′ , we can write the constraints (10) as matrix equation Ĉb̂µ′ =

d̂ where the coefficient matrix Ĉ ∈ CX×Y is determined by the cξj of each

constraint (10), and the right-hand side d̂ ∈ CX by the corresponding cξµj and
the b

(j)
µ (ξ) for µ > µ′, which for the moment we regard as known. Note that X <

Y since Ĉ is in row echelon form. Let its pivots be in the positions q1, . . . , qX
and set Z := Y − X. Then we can write the solution as b̂µ′ = b̃µ′ + C̃ · CZ .

Here b̃µ′ ∈ CY is the vector with entry d̂j in row qj and zero otherwise, while C̃ ∈
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CY×Z consists of the non-pivot columns of the padded matrix (its j-th row is
the i-th row of Ĉ for pivot indices j = qi, and −ej for non-pivot indices j).
Writing ŵ = (w1, . . . , wZ) ∈ CZ for the corresponding free parameters, we may
thus view (10) as providing Y constraints

b
(j)
µ′ (ξ) = bµ′ξj(ŵ, b̂+), (11)

where the bµ′ξj(ŵ, b̂+) are C-linear combinations of the free parameters ŵ and

certain derivatives b
(j)
µ (ξ) that we have collected into a vector b̂+ ∈ CT−Y .

Again we may view bµ′ξj(. . . ) as a row vector in C1×(Z+T−Y ) whose entries can

ultimately be computed from Â and B̂.
We regard now (11) as determining equations for fixing Y of the coefficients

of bµ′(x) =
∑
bµ′kx

k. Indeed, if j is the highest derivative order occurring in (11)
we may split according to bµ′(x) =

∑
k≤j bµ′kx

k + xj+1b̄µ′(x), with an arbitrary

power series b̄µ′(x), and then substitute this into (11) to obtain

bµ′j = bµ′ξj(ŵ, b̂+)−
j∑
i=0

(
j
i

)
j + 1

i+ 1
ξi+1 b̄

(i)
µ′ (ξ) (12)

for fixing one coefficient of bµ′(x). Now we substitute this bj back into the above
ansatz bµ′(x) =

∑
k≤j bµ′kx

k+xj+1b̄µ′(x), and we repeat the whole process for all
other constraints (11), each time determining the lowest unknown coefficient bk
of bµ′(x). Of course, it may be necessary to expand the splitting to extract a
larger polynomial part (if all the coefficients in the current polynomial part are
determined). Eventually, we end up with

bµ′(x) =
∑

k≤mµ′

bµ′k(ŵ, b̂+)xk + xmµ′+1 b̄µ′(x), (13)

with some break-off index mµ′ that is specific to bµ′(x), and with b̂+ enlarged
to comprise also the derivatives b̄

(j)
µ′ (ξ) that were needed in determining the

coefficients (12). Substituting (13) into (9), we see that the bµ′k(ŵ, b̂+) may

be combined with the aµ′k(v̂, b̂) if we adjoin the parameters ŵ to the parame-
ters v̂; then we can also rename the series b̄µ′(x) back to bµ′(x). Of course new

terms aµ′k(v̂, b̂)xk+µ
′

may be created in the ansatz (9), and its polynomial part
may be expanded—but its overall form is not altered.

We have now eliminated those constraints amongst the bµ(x) occurring in (8)
that involve bµ′ , where µ′ was chosen minimal. Hence we are only left with
constraints amongst the bµ(x) with µ > µ′. Repeating the elimination process
a finite number of times (at most |M | eliminations are necessary), we obtain
the generic form of u ∈ B⊥ as given in (9), where the bµ(x) are now arbitrary
(convergent) power series. Since the terms with distinct factors xµ are clearly in
distinct direct sum components xµAµ, the latter may now be described by

Aµ =

{ sµ∑
k=kµ

aµk(v̂, b̂)xk + xjµ bµ(x)

∣∣∣∣ v̂ ∈ CV ,
b(x) ∈ Cω(I)M

}
,
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where we have set jµ := sµ+1. Splitting the coefficients aµk(v̂, b̂) into a C-linear
combination of the free parameters (v1, . . . , vV ) and a C-linear combination of

the derivatives b
(j)
ν (ξ) comprising b̂, we collect terms whose coefficient is a specific

parameter vi (i = 1, . . . , V ) or a specific derivative b
(j)
ν (ξ) (ν ∈M, ξ ∈ Ξ, j ≥ 0).

This leads to

Aµ =

{ V∑
i=1

vi pµi(x) + xjµ bµ(x) +
∑
ν∈M

∑
ξ,j

b(j)ν (ξ) qµνξj(x)

∣∣∣∣ v̂ ∈ CV ,
b(x) ∈ Cω(I)M

}
and hence to (6) by extracting a C-basis for each [pµ1(x), . . . , pµV (x)].

We have now established Step 3 of our program since the accessible space T (B⊥)
can be specified by applying T ∈ C[x, 1x to the generic functions (6) of the ad-
missible space B⊥. Our next goal is to find a projector Q onto T (B⊥), which
then gives the exceptional space E := Ker(Q) = Im(1−Q) required for Step 4.
This will be easy once we have a corresponding projector onto B⊥. In fact, the
operator Pµ in Proposition 5 is not quite a projector (for one thing, it is not
even an endomorphism), but in a sense it is not far away from being one. For
seeing this, note that we have

F =
⊕
µ∈M

xµC((x)), (14)

where C((x)) denotes the field of Laurent series (converging in the punctured
unit disk). The direct decomposition (14) just reflects the fact that the xµ for
distinct µ ∈M are linearly independent. Let us write 〈µ〉 : F → F for the indicial
projector onto the component xµC((x)) of (14). In other words, 〈µ〉 extracts all
terms of the form xk+µ (k ∈ Z) from a series in F . Note that combinations
like β = eξD

k〈µ〉 provide linear functionals β ∈ F∗ for extracting derivatives of
the µ-component of a given series in F .

For writing the projector corresponding to Proposition 5, let us also introduce
the auxiliary operator xµ : C((x)) → xµC((x)) ≤ F and its inverse x−µ. Then
we shall see that the required projector is essentially a “twisted” version of two
kinds of projector: one for splitting off the polynomial part of the occurring
series, and one for imposing the derivative terms. For convenience, we shall use
orthogonal projectors in C((x)), where the underlying inner product is defined
by 〈xk|xl〉 = δkl for all k, l ∈ Z. Such projectors are always straightforward to
compute (using linear algebra on complex matrices).

Corollary 1. Using the same notation as in Proposition 5, let Rµ, Sµ : C(x))→
C(x) be the orthogonal projectors onto [pµ1(x), . . . , pµ lµ(x)] and onto xjµ C((x)),
respectively. Writing R′µ := xµRµx

−µ〈µ〉 and S′µ := xµSµx
−µ〈µ〉 for their twisted

analogs, we define the linear operator P : F → F by

P =
∑
µ∈M

(
R′µ + S′µ +

∑
ν∈M

∑
ξ,j

xµ qµνξj(x) eξD
jx−jµ−µS′ν

)
(15)

is a projector onto B⊥.
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Proof. The action of P on a general series (which we may split at sµ = jµ − 1
in its µ-components)

u(x) =
∑
µ∈M

xµ fµ(x) =
∑
µ∈M

sµ∑
k=kµ

fµkx
k+µ +

∑
µ∈M

xjµ+µ bµ(x) ∈ F

is

Pu(x) =
∑
µ∈M

xµ
(
Rµ

( sµ∑
k=kµ

fµkx
k
)

+ xjµ bµ(x) +
∑
ν∈M

∑
ξ,j

qµνξj(x) b(j)ν (ξ)

)
,

where we have set bµ(x) := x−jµfµ(x) ∈ Cω(I). Extracting the xµ component
of Pu yields

Rµ

( sµ∑
k=kµ

fµkx
k
)

+ xjµ bµ(x) +
∑
ν∈M

∑
ξ,j

qµνξj(x) b(j)ν (ξ) ∈ Aµ (16)

as one sees by comparing with the last displayed equation in the proof of Propo-
sition 5. Hence we may conclude that Im(P ) ≤ B⊥.

It remains to prove that Pu = u for u ∈ B⊥ since this implies Im(P ) ≥ B⊥
and P 2 = P so that P is indeed a projector onto B⊥ as claimed in the corollary.
So assume u(x) ∈ B⊥ is arbitrary, and split it as above. The orders kµ of the se-
ries fµ are given by the curbing constraints. Since u(x) already satisfies all bound-
ary conditions in Bn +B+ ≤ B, the reduced row echelon form of (8) will contain
only zero rows. The original ansatz (7) is then left intact; no expansion of the

polynomial part is necessary and no b̂ are involved in its coefficients. Therefore
the original coefficients aµk in (7) coincide with the coeffients aµk(v̂, b̂) = aµk(v̂)
in (8), which constitute the polynomials of Pµ := [pµ1(x), . . . , pµ lµ(x)]. Now let
us consider (16). Since the series

∑
k fµkx

k is thus already in Pµ = Im(Rµ), we

may omit the action of Rµ and since aµk(v̂, b̂) = aµk(v̂) the triple sum in (16) is
zero. But then Pu(x) becomes identical with u(x) as was claimed.

For accomplishing Step 4 of our program, it only remains to determine a
projector Q onto the accessible space T (B⊥) from the projector P onto the
admissible space B⊥ provided in Corollory 1. This can be done easily since Q is
essentially a conjugate of P except that we use a fundamental right inverse T♦,
for want of a proper inverse. (The formula for T♦ in [11, Prop. 23] and [12,
Thm. 20] may be used but recall that in our case

r
=

r x
1

so that e = e1.)

Proposition 1. Using the same notation as in Proposition 1, the operator

Q := TPT♦ : F → F

is a projector onto the accessible space T (B⊥).
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Proof. Let us first check that Q is a projector. Writing U := 1 − T♦T for the
projector onto KerT along [e, eD, . . . , eDn−1] and using P 2 = P , we will indeed
get

Q2 = TP 2T♦ − TPUPT♦ = TPT♦ = Q

provided we can ascertain that KerT ≤ KerP =: C since then PU = 0. We
know that B⊥ u C = F since P is a projector onto B⊥ along C. On the other
hand, we have also Ker(T ) u B⊥n = F since (T,Bn) is regular. Intersecting C in
the former decomposition with the latter yields

B⊥ u (C ∩ B⊥n ) u (C ∩KerT ) = F . (17)

But Bn ≤ B implies B⊥ ≤ B⊥n , so intersecting the decomposition B⊥ u C = F
with B⊥n leads to B⊥ u (C ∩ B⊥n ) = B⊥n . Using the other decompostion Ker(T )u
B⊥n = F one more time we obtain

B⊥ u (C ∩ B⊥n ) u KerT = F . (18)

Comparing (17) and (18), we can apply the well-known rule [4, (2.6)] to obtain
the identity C ∩KerT = KerT and hence the required inclusion KerT ≤ C.

It remains to prove that Im(Q) = T (B⊥). The inclusion from left to right is
obivous, so assume f = Tu with u ∈ B⊥. Then T♦f = u−Uu and hence PT♦f =
Pu − PUu = u because P projects onto B⊥ and PU = 0 from the above. But
then we have also Qf = TPT♦f = Tu = f and in particular f ∈ Im(Q).

We have now sketched how to carry out the four main steps in our program
aimed at the algorithmic treatment of finding/imposing “good” boundary con-
ditions on a Fuchsian differential equation with one (mild) singularity. At the
moment we do not have a full implementation of the underlying algorithms in
TH∃OREM∀ (or any other system). However, we have implemented a prototype
version of some portion of this theory. We shall demonstrate some of its features
by with example from engineering mechanics.

4 Application to Functionally Graded Kirchhoff Plates

Circular plates play an important role for many application areas in engineering
mechanics and mathematical physics. If the plates are thin (the ratio of thickness
to diameter is small enough), one may employ the well-known Kirchhoff-Love
plate theory [6], whose mathematical description is essentially two-dimensional
(via a linear second-order partial differential equation in two independent vari-
ables). We will furthermore restrict ourselves to circular Kirchhoff plates so as
to have a one-dimensional mathematical model, via a linear ordinary differential
equation of second order.

However, we shall not assume homogeneous plates. Indeed, the precise man-
ufacture of functionally graded materials is an important branch in engineering
mechanics. In the case of Kirchhoff plates, the functional grading is essentially
the variable thickness t = t(r) or variable bending rigidity D = D(r) of the plate
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along its radial profile. (We write r for the radius variable ranging between zero
at the center and the outer radius r = b.)

Let w = w(r) be the displacement of the plate as a function of its radius.
This is the quantity that we try to determine. It induces the radial and tangential
moments given, respectively by

Mr(r) = −D(r)
(
w′′(r) + ν

r w
′(r)
)
,

Mθ(r) = −D(r)
(
1
r w
′(r) + ν w′′(r)

)
,

where ν is the Poisson’s ratio of the plate (which we assume constant). For
typical materials, ν may be taken as 1

3 ,
1
4 ,

1
5 or even 0. A reasonable constitutive

law for the bending rigidity is

D(r) = E(r) t(r)3

12(1−ν2) , (19)

where E = E(r) is the variable Young’s modulus of the plate.
The equilibrium equation can then be written as

dMr

dr
+
Mr −Mθ

r
= Qr, (20)

where Qr = Qr(r) is the cumulative load

Qr(r) = − 1

2πr

∫ r

0

q(r) 2πr dr = −1

r

∫ r

0

q(r) r dr

induced by a certain loading q = q(r) that may be thought to describe the weight
(or other forces) acting in each ring [r, r + dr].

For the calculational treatment of (20) it it useful to introduce the func-
tion ϕ := −w′(r), which represents the (negative) slope of the plate profile. In
terms of ϕ, the equilibrium equation is given by

ϕ′′(r) +
(1

r
+
D′(r)

D(r)

)
ϕ′(r) +

(
ν
D′(r)

D(r)
− 1

r

)ϕ(r)

r
=
Qr(r)

D(r)
.

A typical example of a useful thickness grading is the linear ansatz t = t0(1− r
b ),

cut off beyond some a < b close to b; this describes a radially symmetric pointed
plate with straight edges (more or less a very flat cone). Suppressing the cut-off
for the moment and changing the independent variable r to ρ = r/b, we have thus
thickness t(ρ) = t0 · (1− ρ) and from (19) bending rigidity D(ρ) = D0 · (1− ρ)3

with D0 := Et30/12(1− ν2). The equilibrium equation becomes now

ϕ′′(ρ) +
(1

ρ
− 3

1− ρ

)
ϕ′(ρ)−

(1

ρ
+

1

1− ρ

)ϕ(ρ)

ρ
=

Qr(ρ) b2

D0(1− ρ)3
,

where we have set ν = 1
3 for simplicity. Note that the right-hand side of this equa-

tion, which we shall designate by f(ρ), is not a fixed function of ρ but depends
on our choice of the loading. Hence we consider f(x) as a forcing function.
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For the boundary conditions (for once we use this word in its original literal
sense!) we shall use w′(0) = w′(a) = 0, which translates to ϕ′(0) = ϕ′(β) = 0
in the ϕ = ϕ(ρ) formulation, with the abbreviation β := a/b < 1. Physically
speaking, this corresponds to a plate that is clamped in the center and left free
at its periphery (this comes from translating suitable boundary conditions for
the displacement w = w(r) and taking the appropriate limits). In summary, we
have the boundary problem

ϕ′′(ρ) +
(

1
ρ −

3
1−ρ

)
ϕ′(ρ)−

(
1
ρ + 1

1−ρ

)
ϕ(ρ)
ρ = f(ρ),

ϕ(0) = ϕ(β) = 0,
(21)

which is indeed of the type discussed in Section 3, by a simple scaling from I =
[0, 1] to [0, β]. Its treatment in the GreenGroebner package proceeds as follows
[we apologize for the lousy graphics rendering—we plan to fix this as soon as
possible]:

The output is the Green’s operator G of (21) applied to a generic forcing
function f(ρ), giving the solution ϕ(ρ) = Gf (ρ) as an integral∫ 1

0

g(ρ, ξ) f(ξ) dξ

in terms of the Green’s function g(ρ, ξ); the latter can also be retrieved explicitly
if this is desired (note that the expression is clipped on the right-hand side so
the two case conditions ξ ≤ ρ and ρ < ξ labelling the two lines are not visible):
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Let us now choose a constant loading q(ρ) = q0. Taking the cut-off into
account, this leads to the forcing function f(ρ) = ρ+1

ρ(ρ−1)2 . In this case, we can

compute the solution ϕ(ρ) of (21) explicitly. For definiteness, let us choose a
cut-off at β = 0.9. In that case, we obtain

ϕ(ρ) =
(
− 2790ρ3 + 1944 ρ3 log(9/ρ− 9) + 2000 ρ3 log(1− ρ)

− 2000ρ3 log(10− 10ρ) + 4671ρ2 − 2916ρ2 log(9/ρ− 9)− 3000ρ2 log(1− ρ)

+ 3000ρ2 log(10− 10ρ)− 1944ρ+ 972 log(1− ρ)
)/(

2916(ρ− 1)2ρ
)
,

and the corresponding displacement w(ρ) = −
r β
0
ϕ(ρ) dρ is given by

w(ρ) =
(
− 972(ρ− 1) Li2

(
(1− ρ)−1

)
+ 972(ρ− 1) Li2(1− ρ)− 2790ρ2

+ 1944ρ2 log(9) + 3944ρ2 log(1− ρ)− 2000ρ2 log(−10(ρ− 1))

− 1944ρ2 log(ρ) + 2853ρ+ 500ρ log2(10) + 14ρ log2(1− ρ)

− 500ρ log2(−10(ρ− 1))− 14 log2(1− ρ) + 500 log2(−10(ρ− 1))

− 972ρ log(9)− 1500ρ log(100) + 486ρ log(81) log(1− ρ)− 7825ρ log(1− ρ)

+ 4000ρ log(−10(ρ− 1)) + 972ρ log(1− ρ) log(ρ) + 972ρ log(ρ)

− 1944 log (9/ρ− 9)− 486 log(81) log(1− ρ) + 6825 log(1− ρ)

− 3000 log(−10(ρ− 1))− 972 log(1− ρ) log(ρ)− 1944 log(ρ)− 500 log2(10)

+ 1944 log(9) + 1500 log(100)
)/

2916(1− ρ)

We have displayed the graphs of these solutions ϕ(ρ) and w(ρ) below.

Of course one could use different functional gradings and/or loading func-
tions, and the integrals would not always come out in closed form. In this case one
can resort to numerical integration (which is also supported by Mathematica).
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