Skip to main content

Instance-Based Learning for Tweet Monitoring and Categorization

  • Conference paper
  • First Online:
Experimental IR Meets Multilinguality, Multimodality, and Interaction (CLEF 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9283))

  • 1864 Accesses

Abstract

The CLEF RepLab 2014 Track was the occasion to investigate the robustness of instance-based learning in a complete system for tweet monitoring and categorization based. The algorithm we implemented was a k-Nearest Neighbors. Dealing with the domain (automotive or banking) and the language (English or Spanish), the experiments showed that the categorizer was not affected by the choice of representation: even with all learning tweets merged into one single Knowledge Base (KB), the observed performances were close to those with dedicated KBs. Interestingly, English training data in addition to the sparse Spanish data were useful for Spanish categorization (+14% for accuracy for automotive, +26% for banking). Yet, performances suffered from an overprediction of the most prevalent category. The algorithm showed the defects of its virtues: it was very robust, but not easy to improve. BiTeM/SIBtex tools for tweet monitoring are available within the DrugsListener Project page of the BiTeM website (http://bitem.hesge.ch/).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gobeill, J., Teodoro, D., Pasche, E., Ruch, P.: Report on the trec 2009 experiments: chemical IR track. In: The Eighteenth Text REtrieval Conference (2009)

    Google Scholar 

  2. Gobeill, J., Pasche, E., Teodoro, D., Ruch, P.: Simple pre and post processing strategies for patent searching in CLEF intellectual property track. In: Peters, C., Di Nunzio, G.M., Kurimo, M., Mandl, T., Mostefa, D., Peñas, A., Roda, G. (eds.) CLEF 2009. LNCS, vol. 6241, pp. 444–451. Springer, Heidelberg (2010)

    Google Scholar 

  3. Teodoro, D., Gobeill, J., Pasche, E., Ruch, P., Vishnyakova, D., Lovis, C.: Automatic IPC encoding and novelty tracking for effective patent mining. In: The 8th NTCIR Workshop Meeting on Evaluation of Information Access Technologies, Tokyo, Japan, pp. 309–317 (2010)

    Google Scholar 

  4. Vishnyakova, D., Pasche, E., Ruch, P.: Selection of relevant articles for curation for the comparative toxicogenomic database. In: BioCreative Workshop [Internet], pp. 31–38 (2012)

    Google Scholar 

  5. Cavnar, W., Trenkle, J.: N-gram-based text categorization. In: Proceedings of SDAIR-1994, 3rd Annual Symposium on Document Analysis and Information Retrieval (1994)

    Google Scholar 

  6. Practical cryptography. http://practicalcryptography.com/

  7. Ounis, I., Amati, G., Plachouras, V., He, B., Macdonald, C., Lioma, C.: Terrier: A high performance and scalable information retrieval platform. In: Proceedings of ACM SIGIR 2006 Workshop on Open Source Information Retrieval (2006)

    Google Scholar 

  8. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing. MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  9. BiTeM website. http://bitem.hesge.ch/

  10. Müller, H., Geissbühler, A., Ruch, P.: ImageCLEF 2004: combining image and multi-lingual search for medical image retrieval. In: Peters, C., Clough, P., Gonzalo, J., Jones, G.J., Kluck, M., Magnini, B. (eds.) CLEF 2004. LNCS, vol. 3491, pp. 718–727. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Müller, H., Geissbühler, A., Marty, J., Lovis, C., Ruch, P.: The use of medGIFT and easyIR for imageCLEF 2005. In: Peters, C., Gey, F.C., Gonzalo, J., Müller, H., Jones, G.J., Kluck, M., Magnini, B., de Rijke, M., Giampiccolo, D. (eds.) CLEF 2005. LNCS, vol. 4022, pp. 724–732. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Gobeill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gobeill, J., Gaudinat, A., Ruch, P. (2015). Instance-Based Learning for Tweet Monitoring and Categorization. In: Mothe, J., et al. Experimental IR Meets Multilinguality, Multimodality, and Interaction. CLEF 2015. Lecture Notes in Computer Science(), vol 9283. Springer, Cham. https://doi.org/10.1007/978-3-319-24027-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24027-5_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24026-8

  • Online ISBN: 978-3-319-24027-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics