Skip to main content

Progressive Image Segmentation Using Online Learning

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing -- PCM 2015 (PCM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9314))

Included in the following conference series:

Abstract

This article proposed a progressive image segmentation, which allow users to segment images according to their preferences without any boring pre-labeling or training stages. We use an online learning method to train/update the segmentation model progressively. User can scribble on the image to label initial samples or correct the false-labeled regions of the result. To efficiently integrate the interaction with the learning and updating process, a three-level representation of images is built. The proposed method has three advantages. Firstly, the segmentation model can be learned online along with user’s manipulation without any pre-labeling. Secondly, the diversity of segmentation accord with user’s preferences can be met flexibly, and the more use the more accurate the segmentation could be. Finally, the segmentation model can be updated online to meet the needs of users. The experimental results demonstrate these advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shotton, J., Winn, J., Rother, C., et al.: Textonboost for image understanding: multi-class object recognition and segmentation by jointly modelling texture, layout, and context. Int. J. Comput. Vis. 81(1), 2–23 (2009)

    Article  Google Scholar 

  2. Gould, S., Rodgers, J., Cohen, D., et al.: Multi-class segmentation with relative location prior. Int. J. Comput. Vis. 80(3), 300–316 (2008)

    Article  Google Scholar 

  3. Socher, R., Fei-Fei, L.: Connecting modalities: semi-supervised segmentation and annotation of images using unaligned text corpora. In: IEEE CVPR, pp. 966–973 (2010)

    Google Scholar 

  4. Rother, C., Minka, T., et al.: Cosegmentation of image pairs by histogram matching-incorporating a global constraint into MRFs. In: IEEE CVPR, pp. 993–1000 (2006)

    Google Scholar 

  5. Joulin, A., Bach, F., Ponce, J.: Discriminative clustering for image co-segmentation. In: CVPR (2010)

    Google Scholar 

  6. Kim, G., Xing, E.P., Fei-Fei, L., et al.: Distributed cosegmentation via submodular optimization on anisotropic diffusion. In: IEEE ICCV, pp. 169–176 (2011)

    Google Scholar 

  7. Zhang, F.Q., Sun, Z.X., Song, M.F., Lang, X.F.: Progressive 3D shape segmentation using online learning. Comput. Aided Des. 58(1), 2–12 (2015)

    Article  Google Scholar 

  8. Ristin, M., Guillaumin, M., Gall, J., Van Gool, L.: Incremental learning of NCM forests for large-scale image classification. In: IEEE CVPR, pp. 3654–3661 (2014)

    Google Scholar 

  9. Collins, R., Liu, Y., Leordeanu, M.: Online selection of discriminative tracking features. In: IEEE TPAMI, pp. 1631–1643 (2005)

    Google Scholar 

  10. Saffari, A., Godec, M., Pock, T., et al.: Online multi-class LPBoost. In: IEEE CVPR, pp. 3570–3577 (2010)

    Google Scholar 

  11. Saffari, A., Leistner, C., Santner, J., et al.: Online random forests. In: IEEE ICCV Workshops, pp. 1393–1400 (2009)

    Google Scholar 

  12. Batra, D., Kowdle, A., et al.: Interactively co-segmentation topically related images with intelligent scribble guidance. Int. J. Comput. Vis. 93(3), 273–292 (2011)

    Article  Google Scholar 

  13. Achanta, R., Shaji, A., Smith, K., et al.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE TPAMI 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  14. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  15. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE TPAMI 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  16. Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In: Eighth IEEE ICCV, pp. 105–112 (2001)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National High Technology Research and Development Program of China (Project No. 2007AA01Z334), National Natural Science Foundation of China (Project No. 61321491 and 61272219), Innovation Fund of State Key Laboratory for Novel Software Technology (Project No. ZZKT2013A12).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengxing Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hu, J., Sun, Z., Yang, K., Chen, Y. (2015). Progressive Image Segmentation Using Online Learning. In: Ho, YS., Sang, J., Ro, Y., Kim, J., Wu, F. (eds) Advances in Multimedia Information Processing -- PCM 2015. PCM 2015. Lecture Notes in Computer Science(), vol 9314. Springer, Cham. https://doi.org/10.1007/978-3-319-24075-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24075-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24074-9

  • Online ISBN: 978-3-319-24075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics