Skip to main content

Gaze Shifting Kernel: Engineering Perceptually- Aware Features for Scene Categorization

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing -- PCM 2015 (PCM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9314))

Included in the following conference series:

  • 1810 Accesses

Abstract

In this paper, we propose a novel gaze shifting kernel for scene image categorization, focusing on discovering the mechanism of humans perceiving visually/semantically salient regions in a scene. First, a weakly supervised embedding algorithm projects the local image descriptors (i.e., graphlets) into a pre-specified semantic space. Afterward, each graphlet can be represented by multiple visual features at both low-level and high-level. As humans typically attend to a small fraction of regions in a scene, a sparsity-constrained graphlet ranking algorithm is proposed to dynamically integrate both the low-level and the high-level visual cues. The top-ranked graphlets are either visually or semantically salient according to human perception. They are linked into a path to simulate human gaze shifting. Finally, we calculate the gaze shifting kernel (GSK) based on the discovered paths from a set of images. Experiments on the USC scene and the ZJU aerial image data sets demonstrate the competitiveness of our GSK, as well as the high consistency of the predicted path with real human gaze shifting path.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guestrin, E.D., Eizenman, M.: General theory of remote gaze estimation using the pupil center and corneal reflections. IEEE T-BE 53(6), 1124–1133 (2006)

    Google Scholar 

  2. Jixu, C., Qiang, J.: Probabilistic gaze estimation without active personal calibration. In: Proceedings of CVPR (2011)

    Google Scholar 

  3. Nakazawa, A., Nitschke, C.: Point of gaze estimation through corneal surface reflection in an active illumination environment. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 159–172. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Murphy-Chutorian, E., Trivedi, M.M.: Head pose estimation in computer vision: a survey. IEEE T-PAMI 31(4), 607–626 (2009)

    Article  Google Scholar 

  5. Cai, Q., Gallup, D., Zhang, C., Zhang, Z.: Head 3D deformable face tracking with a commodity depth camera. In: Proceeding of ECCV (2010)

    Google Scholar 

  6. Lu, F., Okabe, T., Sugano, Y., Sato, Y.: A head pose-free approach for appearance-based gaze estimation. In: Proceedings of BMVC (2011)

    Google Scholar 

  7. Mora, K.A.F., Odobez, J.-M.: Gaze estimation from multimodal kinect data. In: CVPR Workshop (2012)

    Google Scholar 

  8. Mora, K.A.F., Odobez, J.-M.: Person independent 3D gaze estimation from remote RGB-D camera. In: Proceedings of ICIP (2013)

    Google Scholar 

  9. Moosmann, F., Larlus, D., Frederic, J.: Learning saliency maps for object categorization. In: ECCV Workshop (2006)

    Google Scholar 

  10. Gao, D., Vasconcelos, N.: Discriminant saliency for visual recognition from cluttered scenes. In: Proceedings of NIPS (2004)

    Google Scholar 

  11. Gao, D., Vasconcelos, N.: Integrated learning of saliency, complex features and object detectors from cluttered scenes. In: Proceedings of CVPR (2005)

    Google Scholar 

  12. Parikh, D., Zitnick, C.L., Chen, T.: Determining patch saliency using low-level context. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 446–459. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Oliva, A., Torralba, A., Castelhano, M.S., Henderson, J.M.: Top-down control of visual attention in object detection. In: Proceedings of ICCV (2009)

    Google Scholar 

  14. Harada, T., Ushiku, Y., Yuya Y.: Discriminative spatial pyramid. In: Proceedings of CVPR, Yasuo Kuniyoshi (2011)

    Google Scholar 

  15. Yao, B., Khosla, A., Fei-Fei, L.: Combining randomization and discrimination for fine-grained image categorization. In: Proceedings of CVPR (2011)

    Google Scholar 

  16. Zhang, L., Song, M., Zhao, Q., Liu, X., Bu, J., Chen, C.: Probabilistic graphlet transfer for photo cropping. IEEE T-IP 21(5), 803–815 (2013)

    Google Scholar 

  17. Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices, arXiv preprint (2010). arXiv:1009.5055

  18. Zhang, L., Han, Y., Yang, Y., Song, M., Yan, S., Tian, Q.: Discovering discriminative graphlets for aerial image categories recognition. IEEE T-IP 22(12), 5071–5084 (2013)

    Article  MathSciNet  Google Scholar 

  19. Siagian, C., Itti, L.: Rapid biologically-inspired scene classification using features shared with visual attention. IEEE T-PAMI 29(2), 300–312 (2007)

    Article  Google Scholar 

  20. Harchaoui, Z., Bach, F.: Image classification with segmentation graph kernels. In: Proceedings of ICCV (2007)

    Google Scholar 

  21. Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of ICCV (2006)

    Google Scholar 

  22. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear coding for image classification. In: Proceedings of CVPR (2010)

    Google Scholar 

  23. Yang, J., Yu, K., Gong, Y., Huang, T.: Linear spatial pyramid matching using sparse coding for image classification. In: Proceedings of CVPR (2009)

    Google Scholar 

  24. Li, L.-J., Su, H., Xing, E.P., Fei-Fei, L.: Object bank: a high-level image representation for scene classification and semantic feature sparsification. In: Proceedings of NIPS (2010)

    Google Scholar 

  25. Hou, X., Harel, J., Koch, C., Signature, I.: Highlighting sparse salient regions. IEEE T-PAMI 34(1), 194–201 (2012)

    Article  Google Scholar 

  26. Yao, B., Yang, X., Zhu, S.-C.: Introduction to a large scale general purpose ground truth dataset: methodology, annotation tool, and benchmarks. In: EMMCVPR (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luming Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, L., Hong, R., Wang, M. (2015). Gaze Shifting Kernel: Engineering Perceptually- Aware Features for Scene Categorization. In: Ho, YS., Sang, J., Ro, Y., Kim, J., Wu, F. (eds) Advances in Multimedia Information Processing -- PCM 2015. PCM 2015. Lecture Notes in Computer Science(), vol 9314. Springer, Cham. https://doi.org/10.1007/978-3-319-24075-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24075-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24074-9

  • Online ISBN: 978-3-319-24075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics