Skip to main content

Beyond HOG: Learning Local Parts for Object Detection

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing -- PCM 2015 (PCM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9314))

Included in the following conference series:

  • 1873 Accesses

Abstract

Histogram of Oriented Gradients (HOG) features have laid solid foundation for object detection in recent years for its both accuracy and speed. However, the expressivity of HOG is limited because the simple gradient features may ignore some important local information about objects and HOG is actually data-independent. In this paper, we propose to replace HOG by a parts-based representation, Histogram of Local Parts (HLP), for object detection under sliding window framework. HLP can capture richer and larger local patterns of objects and are more expressive than HOG. Specifically, we adopt Sparse Nonnegative Matrix Factorization to learn an over-complete parts-based dictionary from data. Then we can obtain HLP representation for a local patch by aggregating the Local Parts coefficients of pixels in this patch. Like DPM, we can train a supervised model with HLP given the latent positions of roots and parts of objects. Extensive experiments on INRIA and PASCAL datasets verify the superiority of HLP to state-of-the-art HOG-based methods for object detection, which shows that HLP is more effective than HOG.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bourdev, L., Malik, J.: Poselets: body part detectors trained using 3d human pose annotations. In: ICCV (2009)

    Google Scholar 

  2. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix factorization for data representation. TPAMI 33(8), 1548–1560 (2011)

    Article  Google Scholar 

  3. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: CVPR (2005)

    Google Scholar 

  4. Dikmen, M., Hoiem, D., Huang, T.S.: A data-driven method for feature transformation. In: CVPR (2012)

    Google Scholar 

  5. Ding, G., Guo, Y., Zhou, J.: Collective matrix factorization hashing for multimodal data. In: CVPR (2014)

    Google Scholar 

  6. Divvala, S., Efros, A., Hebert, M.: How important are deformable parts in the deformable parts model? In: ECCV (2012)

    Google Scholar 

  7. Dollar, P., Tu, Z., Perona, P., Belongie, S.: Integral channel features. In: BMVC (2009)

    Google Scholar 

  8. Everingham, M., Gool, L.V., Williams, C., Winn, J., Zisserman, A.: The pascal visual object classes (voc) challenge. IJCV 88(2), 303–338 (2010)

    Article  Google Scholar 

  9. Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A., Ramanan, D.: Object detection with discriminatively trained part-based models. TPAMI 32(9), 1627–1645 (2010)

    Article  Google Scholar 

  10. Girshick, R., Felzenszwalb, P., McAllester, D.: Object detection with grammar models. In: NIPS (2011)

    Google Scholar 

  11. Guo, Y., Ding, G., Jin, X., Wang, J.: Learning predictable and discriminative attributes for visual recognition. In: AAAI (2015)

    Google Scholar 

  12. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. JMLR 5, 1457–1469 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Hussain, S., Kuntzmann, L., Triggs, B.: Feature sets and dimensionality reduction for visual object detection. In: BMVC (2010)

    Google Scholar 

  14. Lee, D.D., Seung, H.S.: Learning the parts of objects by nonnegative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  15. Lowe, D.G.: Object recognition from local scale-invariant features. In: ICCV (1999)

    Google Scholar 

  16. Malisiewicz, T., Gupta, A., Efros, A.: Ensemble of exemplar-svms for object detection and beyond. In: ICCV (2011)

    Google Scholar 

  17. Pirsiavash, H., Ramanan, D., Fowlkes, C.: Bilinear classifiers for visual recognition. In: NIPS (2009)

    Google Scholar 

  18. Ren, X., Ramanan, D.: Histograms of sparse codes for object detection. In: CVPR (2013)

    Google Scholar 

  19. Roshtkhari, M.J., Levine, M.D.: Online dominant and anomalous behavior detection in videos. In: CVPR (2013)

    Google Scholar 

  20. Schwartz, W., Kembhavi, A., Harwood, D., Davis, L.: Human detection using partial least squares analysis. In: ICCV (2009)

    Google Scholar 

  21. Vedaldi, A., Gulshan, V., Varma, M., Zisserman, A.: Multiple kernels for object detection. In: ICCV (2009)

    Google Scholar 

  22. Vijayanarasimhan, S., Grauman, K.: Efficient region search for object detection. In: CVPR (2011)

    Google Scholar 

  23. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: CVPR (2001)

    Google Scholar 

  24. Wachsmuth, M.W.O.E., Perrett, D.I.: Recognition of objects and their component parts: responses of single units in the temporal cortex of the macaque. Cereb. Cortex 4(5), 509–522 (1994)

    Article  Google Scholar 

  25. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T.S., Gong, Y.: Locality-constrained linear coding for image classification. In: CVPR 2010 (2010)

    Google Scholar 

  26. Xiao, J., Hays, J., Ehinger, K., Oliva, A., Torralba, A.: Sun database: large-scale scene recognition from abbey to zoo. In: CVPR (2010)

    Google Scholar 

  27. Yang, Y., Ramanan, D.: Articulated pose estimation with flexible mixtures-of-parts. In: CVPR (2011)

    Google Scholar 

  28. Zhu, X., Ramanan, D.: Face detection, pose estimation, and landmark localization in the wild. In: CVPR (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenjie Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Huang, C., Qin, Z., Xu, K., Wang, G., Xu, T. (2015). Beyond HOG: Learning Local Parts for Object Detection. In: Ho, YS., Sang, J., Ro, Y., Kim, J., Wu, F. (eds) Advances in Multimedia Information Processing -- PCM 2015. PCM 2015. Lecture Notes in Computer Science(), vol 9314. Springer, Cham. https://doi.org/10.1007/978-3-319-24075-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24075-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24074-9

  • Online ISBN: 978-3-319-24075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics