Abstract
This paper presents a novel marginal Fisher regression classification (MFRC) method by incorporating the ideas of marginal Fisher analysis (MFA) and linear regression classification (LRC). The MFRC aims at minimizing the within-class compactness over the between-class separability to find an optimal embedding matrix for the LRC so that the LRC on that subspace achieves a high discrimination for classification. Specifically, the within-class compactness is measured with the sum of distances between each sample and its neighbors within the same class with the LRC, and the between-class separability is characterized as the sum of distances between margin points and their neighboring points from different classes with the LRC. Therefore, the MFRC embodies the ideas of the LRC, Fisher analysis and manifold learning. Experiments on the FERET, PIE and AR datasets demonstrate the effectiveness of the MFRC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Basri, R., Jacobs, D.: Lambertian reflectance and linear subspaces. IEEE Trans. Pattern Anal. Mach. Intell. 25(2), 218–233 (2003)
Naseem, I., Togneri, R., Bennamoun, M.: Linear regression for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 32(11), 2106–2112 (2010)
Wright, J., Yang, A., Ganesh, A., et al.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)
Huang, S., Yang, J.: Improved principal component regression for face recognition under illumination variations. IEEE Sig. Process. Lett. 19(4), 179–182 (2012)
Naseem, I., Togneri, R., Bennamoun, M.: Robust regression for face recognition. Pattern Recogn. 45(1), 104–118 (2012)
Huang, S., Yang, J.: Linear discriminant regression classification for face recognition. IEEE Sig. Process. Lett. 20(1), 91–94 (2013)
He, J., Ding, L., Jiang, L., et al.: Kernel ridge regression classification. In: IEEE International Joint Conference on Neural Networks, pp. 2263–2267 (2014)
He, X., Yan, S., Hu, Y., et al.: Face recognition using Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 328–340 (2005)
Yan, S., Xu, D., Zhang, B., et al.: Graph embedding: a general framework for dimensionality reduction. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 830–837 (2005)
Lu, J., Tan, Y.P., Wang, G.: Discriminative multimanifold analysis for face recognition from a single training sample per person. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 39–51 (2013)
Brown, D., Li, H., Gao, Y.: Locality-regularized linear regression for face recognition. In: IEEE International Conference on Pattern Recognition, pp. 1586–1589 (2012)
Li, X., Jiang, T., Zhang, K.: Efficient and robust feature extraction by maximum margin criterion. IEEE Trans. Neural Netw. 17(1), 157–165 (2006)
Phillips, P., Moon, H., Rauss, P., et al.: The FERET evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)
Martinez, A., Benavente, R.: The AR face database. CVC Technical Report, 24 (1998)
Turk, M., Pentland, A.: Face recognition using eigenfaces. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–591 (1991)
Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)
Cheng, J., Liu, Q., Lu, H., et al.: Supervised kernel locality preserving projections for face recognition. Neurocomputing 67, 443–449 (2005)
Martinez, A., Kak, A.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 228–233 (2001)
Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination, and expression (PIE) database. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–51 (2002)
Acknowledgements
This work was supported by the National Basic Research Program of China (973 Program) under Grant 2014CB340400, the National Natural Science Foundation of China under Grant 61271325, Grant 61472273, and the Elite scholar Program of Tianjin University under Grant 2015XRG-0014.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Ji, Z., Yu, Y., Pang, Y., Li, Y., Zhang, Z. (2015). Marginal Fisher Regression Classification for Face Recognition. In: Ho, YS., Sang, J., Ro, Y., Kim, J., Wu, F. (eds) Advances in Multimedia Information Processing -- PCM 2015. PCM 2015. Lecture Notes in Computer Science(), vol 9314. Springer, Cham. https://doi.org/10.1007/978-3-319-24075-6_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-24075-6_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24074-9
Online ISBN: 978-3-319-24075-6
eBook Packages: Computer ScienceComputer Science (R0)