Skip to main content

Two-Step Greedy Subspace Clustering

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing -- PCM 2015 (PCM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9314))

Included in the following conference series:

  • 1856 Accesses

Abstract

Greedy subspace clustering methods provide an efficient way to cluster large-scale multimedia datasets. However, these methods do not guarantee a global optimum and their clustering performance mainly depends on their initializations. To alleviate this initialization problem, this paper proposes a two-step greedy strategy by exploring proper neighbors that span an initial subspace. Firstly, for each data point, we seek a sparse representation with respect to its nearest neighbors. The data points corresponding to nonzero entries in the learning representation form an initial subspace, which potentially rejects bad or redundant data points. Secondly, the subspace is updated by adding an orthogonal basis involved with the newly added data points. Experimental results on real-world applications demonstrate that our method can significantly improve the clustering accuracy of greedy subspace clustering methods without scarifying much computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Hopkins155 database is available online at http://www.vision.jhu.edu/data/hopkins155/.

  2. 2.

    The Extended Yale-B database is available online at http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html.

References

  1. Yang, A., Wright, J., Ma, Y., Sastry, S.: Unsupervised segmentation of natural images via lossy data compression. Computer Vis. Image Underst. (CVIU) 110(2), 212–225 (2008)

    Article  Google Scholar 

  2. Vidal, R., Tron, R., Hartley, R.: Multiframe motion segmentation with missing data using powerfactorization and GPCA. Int. J. Comput. Vis. (IJCV) 79(1), 85–105 (2008)

    Article  Google Scholar 

  3. Ho, J., Yang, M.H., Lim, J., Lee, K.C., Kriegman, D.: Clustering appearances of objects under varying illumination conditions. In: Computer Vision and Pattern Recognition (CVPR) (2003)

    Google Scholar 

  4. Hong, W., Wright, J., Huang, K., Ma, Y.: Multi-scale hybrid linear models for lossy image representation. IEEE Trans. Image Process. (TIP) 15(12), 3655–3671 (2006)

    Article  Google Scholar 

  5. Chaudhuri, K., Kakade, S.M., Livescu, K., Sridharan, K.: Multi-view clustering via canonical correlation analysis. In: International Conference on Machine Learning (ICML) (2009)

    Google Scholar 

  6. Zhao, X., Evans, N., Dugelay, J.L.: A subspace co-training framework for multi-view clustering. Pattern Recogn. Lett. (PRL) 41, 73–82 (2014)

    Article  Google Scholar 

  7. Vidal, R.: Subspace clustering. Sign. Process. Mag. 28(2), 52–68 (2011)

    Article  Google Scholar 

  8. Costeira, J., Kanade, T.: A multibody factorization method for independently moving objects. Int. J. Comput. Vis. (IJCV) 29(3), 159–179 (1998)

    Article  Google Scholar 

  9. Kanatani, K.: Motion segmentation by subspace separation and model selection. In: International Conference on Computer Vision (ICCV) (2001)

    Google Scholar 

  10. Vidal, R., Ma, Y., Sastry, S.: Generalized principal component analysis (GPCA). IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 27(12), 1945–1959 (2005)

    Article  Google Scholar 

  11. Zhang, T., Szlam, A., Lerman, G.: Median K-flats for hybrid linear modeling with many outliers. In: Proceedings of 2nd IEEE International Workshop on Subspace Methods, pp. 234–241 (2009)

    Google Scholar 

  12. Tipping, M., Bishop, C.: Mixtures of probabilistic principal component analyzers. Neural Comput. 11(2), 443–482 (1999)

    Article  Google Scholar 

  13. Yang, A.Y., Rao, S., Ma, Y.: Robust statistical estimation and segmentation of multiple subspaces. In: Computer Vision and Pattern Recognition Workshop (CVPRW) (2006)

    Google Scholar 

  14. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  15. Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 35(11), 2765–2781 (2013)

    Article  Google Scholar 

  16. Liu, G., Lin, Z., Yan, S., Sun, J., Yu, Y., Ma, Y.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 35(1), 171–184 (2013)

    Article  Google Scholar 

  17. Zhang, Y., Sun, Z., He, R., Tan, T.: Robust subspace clustering via half-quadratic minimization. In: International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  18. Zhang, Y., Sun, Z., He, R., Tan, T.: Robust low-rank representation via correntropy. In: Asian Conference on Pattern Recognition (ACPR) (2013)

    Google Scholar 

  19. Wang, Y., Xu, H., Leng, C.: Provable subspace clustering: when LRR meets SSC. In: Advances in Neural Information Processing Systems (NIPS) (2013)

    Google Scholar 

  20. Chen, G., Lerman, G.: Spectral curvature clustering. Int. J. Comput. Vis. (IJCV) 81(3), 317–330 (2009)

    Article  Google Scholar 

  21. Dyer, E.L., Sankaranarayanan, A.C., Baraniuk, R.G.: Greedy feature selection for subspace clustering. J. Mach. Learn. Res. (JMLR) 14(1), 2487–2517 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Heckel, R., Bölcskei, H.: Subspace clustering via thresholding and spectral clustering. In: Acoustics, Speech, and Signal Processing (ICASSP) (2013)

    Google Scholar 

  23. Park, D., Caramanis, C.: Greedy subspace clustering. In: Advances in Neural Information Processing Systems (NIPS) (2014)

    Google Scholar 

  24. Donoho, D.L.: For most large underdetermined systems of linear equations the minimal \(l\)1-norm solution is also the sparsest solution. Commun. Pure Appl. Aathematics (CPAA) 59(6), 797–829 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Series B (Methodological) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  26. Tron, R., Vidal, R.: A benchmark for the comparison of 3-D motion segmentation algorithms. In: Computer Vision and Pattern Recognition (CVPR) (2007)

    Google Scholar 

  27. Lee, K.C., Ho, J., Kriegman, D.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 27(5), 684–698 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingxiao Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Song, L., Zhang, M., Sun, Z., Liang, J., He, R. (2015). Two-Step Greedy Subspace Clustering. In: Ho, YS., Sang, J., Ro, Y., Kim, J., Wu, F. (eds) Advances in Multimedia Information Processing -- PCM 2015. PCM 2015. Lecture Notes in Computer Science(), vol 9314. Springer, Cham. https://doi.org/10.1007/978-3-319-24075-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24075-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24074-9

  • Online ISBN: 978-3-319-24075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics