Abstract
In this paper, in order to track objects which undergo rotation and pose changes, we propose a novel algorithm that combines discriminative global and generative local model. Initially, we exploit the wavelet approximation coefficients and completed local binary pattern (CLBP) to represent the object global features. With the obtained global appearance descriptor, we use online discriminative metric learning to differentiate the target object from background. To avoid the drift problem results from global discriminative model, a novel generative spatial geometric local model is introduced. Based on SURF features, the generative local model quantizes the geometric structure information in scale and angle. Then, we combine these global and local models so that they can be benefit each other. Compared with several other tracking algorithms, the experimental results demonstrate that the proposed algorithm is able to track the target object reliably, especially for object pose change and rotation.
L. Zhao—This work is partially supported by the Natural Science Foundation of China (No. 61175096, No. 61300082) and Specialized Fund for Joint Building Program of Beijing municipal Education Commission.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., van den Hengel, A.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. 4, 58 (2013). arXiv preprint arXiv:1303.4803
Ross, D., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1), 125–141 (2008)
Kwon, J., Lee, K.: Visual tracking decomposition. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 1269–1276 (2010)
Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking usin1g local sparse appearance model and k-selection. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 1313–1320 (2011)
Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–577 (2003)
Babenko, B., Yang, M., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)
Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: British Machine Vision Conference, pp. 47–56 (2006)
Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)
Tsagkatakis, G., Savakis, A.: Online distance metric learning for object tracking. IEEE Trans. Circuits Syst. Video Technol. 21(12), 1810–1821 (2011)
Zhong, W., Li, H., Yang, M.: Robust object tracking via sparsity-based collaborative model. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 1838–1845 (2012)
Xie, C., Tan, J., Cheng, P., Zhang, J., He, L.: Collaborative object tracking model with local sparse representation. J. Vis. Commun. Image Represent. 25(2), 423–434 (2014)
Guo, Z., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)
Jain, P., Kulis, B., Dhillon, I.S., Grauman, K.: Online metric learning and fast similarity search. In: Advances in Neural Information Processing Systems, pp. 761–768 (2009)
Sherman, J., Morrison, W.: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat. 21(1), 124–127 (1950)
Yang, F., Lu, H., Yang, M.: Learning structured visual dictionary for object tracking. Image Vis. Comput. 31(12), 992–999 (2013)
Wu, Y., Lim, J., Yang, M.: Online object tracking: a benchmark. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)
Yang, F., Lu, H., Chen, Y.-W.: Human tracking by multiple kernel boosting with locality affinity constraints. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 39–50. Springer, Heidelberg (2011)
Kala, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Zhao, L., Zhao, Q. (2015). Object Tracking via Combining Discriminative Global and Generative Local Models. In: Ho, YS., Sang, J., Ro, Y., Kim, J., Wu, F. (eds) Advances in Multimedia Information Processing -- PCM 2015. PCM 2015. Lecture Notes in Computer Science(), vol 9314. Springer, Cham. https://doi.org/10.1007/978-3-319-24075-6_55
Download citation
DOI: https://doi.org/10.1007/978-3-319-24075-6_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24074-9
Online ISBN: 978-3-319-24075-6
eBook Packages: Computer ScienceComputer Science (R0)