Skip to main content

Object Tracking via Combining Discriminative Global and Generative Local Models

  • Conference paper
  • First Online:
Advances in Multimedia Information Processing -- PCM 2015 (PCM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9314))

Included in the following conference series:

Abstract

In this paper, in order to track objects which undergo rotation and pose changes, we propose a novel algorithm that combines discriminative global and generative local model. Initially, we exploit the wavelet approximation coefficients and completed local binary pattern (CLBP) to represent the object global features. With the obtained global appearance descriptor, we use online discriminative metric learning to differentiate the target object from background. To avoid the drift problem results from global discriminative model, a novel generative spatial geometric local model is introduced. Based on SURF features, the generative local model quantizes the geometric structure information in scale and angle. Then, we combine these global and local models so that they can be benefit each other. Compared with several other tracking algorithms, the experimental results demonstrate that the proposed algorithm is able to track the target object reliably, especially for object pose change and rotation.

L. Zhao—This work is partially supported by the Natural Science Foundation of China (No. 61175096, No. 61300082) and Specialized Fund for Joint Building Program of Beijing municipal Education Commission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, X., Hu, W., Shen, C., Zhang, Z., Dick, A., van den Hengel, A.: A survey of appearance models in visual object tracking. ACM Trans. Intell. Syst. Technol. 4, 58 (2013). arXiv preprint arXiv:1303.4803

    Google Scholar 

  2. Ross, D., Lim, J., Lin, R., Yang, M.: Incremental learning for robust visual tracking. Int. J. Comput. Vis. 77(1), 125–141 (2008)

    Article  Google Scholar 

  3. Kwon, J., Lee, K.: Visual tracking decomposition. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 1269–1276 (2010)

    Google Scholar 

  4. Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking usin1g local sparse appearance model and k-selection. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 1313–1320 (2011)

    Google Scholar 

  5. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(5), 564–577 (2003)

    Article  Google Scholar 

  6. Babenko, B., Yang, M., Belongie, S.: Robust object tracking with online multiple instance learning. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1619–1632 (2011)

    Article  Google Scholar 

  7. Grabner, H., Grabner, M., Bischof, H.: Real-time tracking via on-line boosting. In: British Machine Vision Conference, pp. 47–56 (2006)

    Google Scholar 

  8. Zhang, K., Zhang, L., Yang, M.-H.: Real-time compressive tracking. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 864–877. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Tsagkatakis, G., Savakis, A.: Online distance metric learning for object tracking. IEEE Trans. Circuits Syst. Video Technol. 21(12), 1810–1821 (2011)

    Article  Google Scholar 

  10. Zhong, W., Li, H., Yang, M.: Robust object tracking via sparsity-based collaborative model. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 1838–1845 (2012)

    Google Scholar 

  11. Xie, C., Tan, J., Cheng, P., Zhang, J., He, L.: Collaborative object tracking model with local sparse representation. J. Vis. Commun. Image Represent. 25(2), 423–434 (2014)

    Article  Google Scholar 

  12. Guo, Z., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)

    Article  MathSciNet  Google Scholar 

  13. Jain, P., Kulis, B., Dhillon, I.S., Grauman, K.: Online metric learning and fast similarity search. In: Advances in Neural Information Processing Systems, pp. 761–768 (2009)

    Google Scholar 

  14. Sherman, J., Morrison, W.: Adjustment of an inverse matrix corresponding to a change in one element of a given matrix. Ann. Math. Stat. 21(1), 124–127 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yang, F., Lu, H., Yang, M.: Learning structured visual dictionary for object tracking. Image Vis. Comput. 31(12), 992–999 (2013)

    Article  Google Scholar 

  16. Wu, Y., Lim, J., Yang, M.: Online object tracking: a benchmark. In: IEEE Conference Computer Vision and Pattern Recognition, pp. 2411–2418 (2013)

    Google Scholar 

  17. Yang, F., Lu, H., Chen, Y.-W.: Human tracking by multiple kernel boosting with locality affinity constraints. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 39–50. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  18. Kala, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liujun Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhao, L., Zhao, Q. (2015). Object Tracking via Combining Discriminative Global and Generative Local Models. In: Ho, YS., Sang, J., Ro, Y., Kim, J., Wu, F. (eds) Advances in Multimedia Information Processing -- PCM 2015. PCM 2015. Lecture Notes in Computer Science(), vol 9314. Springer, Cham. https://doi.org/10.1007/978-3-319-24075-6_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24075-6_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24074-9

  • Online ISBN: 978-3-319-24075-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics