Abstract
We propose a framework to integrate the large scale image data visualization with image classification. The Convolution Neural Network is used to learn the feature vector for an image. A fast algorithm is developed for inter-class similarity measurement. The spectral clustering is implemented to construct a hierarchical visual tree. Instead of the flat classification way, a hierarchical classification is designed according to the visual tree, which is transformed to a path search problem. The path with the maximum joint probability is the final solution. Experimental results on the ILSVRC2010 dataset demonstrate that our method achieves the highest top-1 and top-5 classification accuracy in comparison with 6 state-of-the-art methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Csurka, G., Dance, C., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–2, Prague (2004)
Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal visual dictionary. In: Tenth IEEE International Conference on Computer Vision, ICCV 2005, pp. 1800–1807. IEEE (2005)
Nowak, E., Jurie, F., Triggs, B.: Sampling strategies for bag-of-features image classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 490–503. Springer, Heidelberg (2006)
Fan, J., Gao, Y., Luo, H., Jain, R.: Mining multilevel image semantics via hierarchical classification. IEEE Trans. Multimed. 10, 167–187 (2008)
Miller, G., Fellbaum, C.: Wordnet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
Fan, J., Shen, Y., Yang, C., Zhou, N.: Structured max-margin learning for inter-related classifier training and multilabel image annotation. IEEE Trans. Image Process. 20, 837–854 (2011)
Fan, J., He, X., Zhou, N., Peng, J., Jain, R.: Quantitative characterization of semantic gaps for learning complexity estimation and inference model selection. IEEE Trans. Multimed. 14, 1414–1428 (2012)
Sivic, J., Russell, B.C., Zisserman, A., Freeman, W.T., Efros, A.A.: Unsupervised discovery of visual object class hierarchies. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)
Bart, E., Porteous, I., Perona, P., Welling, M.: Unsupervised learning of visual taxonomies. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)
Griffin, G., Perona, P.: Learning and using taxonomies for fast visual categorization. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)
Marszałek, M., Schmid, C.: Constructing category hierarchies for visual recognition. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 479–491. Springer, Heidelberg (2008)
Bengio, S., Weston, J., Grangier, D.: Label embedding trees for large multi-class tasks. In: Advances in Neural Information Processing Systems, pp. 163–171 (2010)
Deng, J., Satheesh, S., Berg, A.C., Li, F.: Fast and balanced: efficient label tree learning for large scale object recognition. In: Advances in Neural Information Processing Systems, pp. 567–575 (2011)
Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using randomized clustering forests. In: Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006), pp. 985–992. MIT Press (2007)
Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Sci. 315(5814), 972–976 (2007)
Berg, A., Deng, J., Fei-Fei, L.: Large scale visual recognition challenge 2010 (2010). www.image-net.org
Sánchez, J., Perronnin, F.: High-dimensional signature compression for large-scale image classification. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1665–1672. IEEE (2011)
Zhou, N., Fan, J.: Jointly learning visually correlated dictionaries for large-scale visual recognition applications. IEEE Trans. Pattern Anal. Mach. Intell. 36, 715–730 (2014)
Perronnin, F., Akata, Z., Harchaoui, Z., Schmid, C.: Towards good practice in large-scale learning for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3482–3489. IEEE (2012)
Lin, Y., Lv, F., Zhu, S., Yang, M., Cour, T., Yu, K., Cao, L., Huang, T.: Large-scale image classification: fast feature extraction and SVM training. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1689–1696. IEEE (2011)
Fan, J., Zhang, J., Mei, K., Peng, J., Gao, L.: Cost-sensitive learning of hierarchical tree classifiers for large-scale image classification and novel category detection. Pattern Recognit. 48, 1673–1687 (2014)
Acknowledgements
This work was supported by the National Natural Science Foundations of China under Grants 61373077, 61472334 and 61170179,the Natural Science Foundation of Fujian Province of China Under Grant 2013J01257,the Fundamental Research Funds for the Central Universities under Grant 20720130720,the 2014 national college students’ innovative and entrepreneurial training project, and the Scientific Research Foundation for the Introduction of Talent at Xiamen University of Technology YKJ12023R.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lu, C., Qu, Y., Shi, C., Fan, J., Wu, Y., Wang, H. (2015). Hierarchical Learning for Large-Scale Image Classification via CNN and Maximum Confidence Path. In: Ho, YS., Sang, J., Ro, Y., Kim, J., Wu, F. (eds) Advances in Multimedia Information Processing -- PCM 2015. PCM 2015. Lecture Notes in Computer Science(), vol 9315. Springer, Cham. https://doi.org/10.1007/978-3-319-24078-7_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-24078-7_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-24077-0
Online ISBN: 978-3-319-24078-7
eBook Packages: Computer ScienceComputer Science (R0)