
1

Password-manager friendly (PMF):
Semantic annotations to improve the
effectiveness of password managers

Frank Stajano, Max Spencer, Graeme Jenkinson, Quentin Stafford-Fraser
{frank.stajano, max.spencer, graeme.jenkinson,

quentin.stafford-fraser}@cl.cam.ac.uk

University of Cambridge Computer Laboratory
15 JJ Thomson Avenue, Cambridge, CB3 0FD, United Kingdom

Abstract. Subtle and sometimes baffling variations in the implementa-
tion of password-based authentication are widespread on the web. De-
spite being imperceptible to end users, such variations often require that
password managers implement complex heuristics in order to act on the
user’s behalf. These heuristics are inherently brittle. As a result, pass-
word managers are unnecessarily complex and yet they still occasionally
fail to work properly on some websites. In this paper we propose PMF,
a specification of simple semantic labels for password-related web forms.
These semantic labels allow a software agent such as a password man-
ager to extract meaning, such as which site the login form is for and
what field in the form corresponds to the username. Our spec also allows
the agent to generate a strong password on the user’s behalf. PMF re-
duces a password manager’s dependency on complex heuristics, making
its operation more effective and dependable and bringing usability and
security advantages to users and website operators.

1 Introduction

We don’t have to explain to this audience that, on the web, we are asked to
remember way too many passwords. One reasonable way of coping with this
burden is with a password manager—a piece of software that remembers pass-
words on the user’s behalf and submits them automatically when required. All
modern browsers such as Chrome, Firefox and Internet Explorer provide an inte-
grated password manager. Because websites frequently have slight differences in
the way they handle asking the user to type a password (or to define a new one),
every password manager must implement complex heuristics in order to parse,
auto-fill and submit the password-requesting web pages. Such code is inherently
fragile and requires continuous maintenance as login web pages evolve and be-
come fancier. As a result, some websites don’t work seamlessly with password
managers.

Password managers would be simpler and more dependable if websites adopted
a set of semantic labels for HTML forms that allowed unambiguous registration

Authors’ preprint. Final version to appear in Proceedings of Passwords 2014, Springer LNCS.



2 Frank Stajano, Max Spencer, Graeme Jenkinson, Quentin Stafford-Fraser

and submission of passwords by programs acting on the user’s behalf. In this
paper we offer two main contributions. First, we document the many ways in
which websites ask for passwords and the many subtle ways in which the heuris-
tics commonly employed by password managers can break, demonstrating how
such code requires extensive maintenance to be reliable. Second, and most im-
portant, we propose PMF, a practical set of semantic labels that websites may
immediately adopt. We also very briefly discuss incentives and benefits for the
various parties involved.

2 Inconsistencies in password-based login on the web

Ignoring issues of style and presentation, password-based authentication on the
web presents a fairly consistent interface to the user. To log in, users first find the
login form, enter their username and password for that site into the appropriate
boxes, and then press return or click the submit button. And, to a first approx-
imation, the behaviour of the browser and the website is consistent across sites
as well: the username and password entered into the form are sent to the server
in an HTTPS POST request and a session cookie is returned. However, when we
look in more detail, we notice a huge range of variations, some subtle and some
baffling. Whilst these variations are imperceptible to the user, they present dif-
ficulties for a software agent parsing or automatically submitting the login form.
This is because sub-tasks like entering the right username and password “into
the appropriate boxes” are non-trivial and must rely on heuristics.

One of the most common mistakes password managers make is offering to
save incorrect passwords. The user makes an error when typing their password,
but despite an error message on the resultant page, their password manager still
creates a dialog box asking the user if they want to save that password. This
is simply because there’s no standard signal to tell the password manager that
the login was unsuccessful; the web server typically returns a “200 OK” HTTP
response because a page was successfully served. At the time of writing, both
Firefox and Internet Explorer both offered to save an incorrect password when
logging into facebook.com. However Chromium and Google Chrome did not.
These browsers employ a heuristic: if the response from the server contains a
form with the same destination as the one which was submitted, then assume
the submission failed1. While we expect this works in many cases, we can still
envisage cases where it may not; or, worse, where it may cause false negatives—
that is, not offering to save a correct password.

It is difficult for a password manager to correctly identify the fields in an
account creation form. Login forms typically have just two fields, one for the
username and another for the password, both of which are important to the
password manager. Account creation forms, however, may have many more,
sometimes spread across multiple pages, and the password manager needs to
1 See password_manager.cc in the Chromium source code (https://code.google.

com/p/chromium/codesearch#chromium/src/components/password_manager/
core/browser/password_manager.cc).

facebook.com
https://code.google.com/p/chromium/codesearch#chromium/src/components/password_manager/core/browser/password_manager.cc
https://code.google.com/p/chromium/codesearch#chromium/src/components/password_manager/core/browser/password_manager.cc
https://code.google.com/p/chromium/codesearch#chromium/src/components/password_manager/core/browser/password_manager.cc


Password-manager friendly (PMF) 3

know which of them contains the username, that is, the unique account identi-
fier to be supplied alongside the password when logging in. We found that Firefox
and Chrome would just save a password with no associated username when we
filled out the amazon.co.uk account creation page. In the case of Chrome, a
duplicate record, including the username, was saved after logging in for the first
time.

Another source of many problems for password managers is JavaScript. Some
sites, such as Pinterest [1], use JavaScript to insert the login form into the page
dynamically, that is, after the raw HTML in the response has been rendered by
the web browser. Besides being annoying for users who browse with JavaScript
disabled for security reasons, this practice also complicates the task of a password
manager. Instead of parsing the HTML document just once at load-time to find
any login forms, it must also monitor all changes made to the Document Object
Model (DOM) by JavaScript thereafter.

The sins of JavaScript don’t end there, though. Many sites use JavaScript
to actually submit the form, thereby confusing utilities such as password man-
agers that commonly intercept submission of the form to save the credentials.
Forgoing a simple submit input adds little benefit and obfuscates the login pro-
cess. Furthermore, to mitigate Cross-Site Request Forgery (CSRF) attacks [2],
JavaScript is sometimes used to insert values (nonces/challenges associated with
the session) into hidden fields within the login form before submission. For ex-
ample, the following hidden input is added to the form on the Vimeo login page
(https://vimeo.com/log_in) using JavaScript:

<input type="hidden" name="token" value="8113..." />

Attempts to log in to Vimeo with JavaScript disabled fail. Programs that parse
or submit a login form must be compatible with such approaches, without being
explicitly aware of what they achieve or even that they are being used.

Another problem facing a software agent such as a password manager is
extracting the meaning (semantics) from the HTML login form. In the first in-
stance, we’d like to determine what site the login form is for. The continued
prevalence of phishing attacks demonstrates that reliably determining the web-
site of a login page is too difficult for many humans. Software agents should
have an advantage here. Indexing the username and password by the site’s URL
ensures that, provided HTTPS is used, the username and password are only
submitted to correct site. Unfortunately, things are rarely this simple. Some
websites have login forms on multiple pages—for example Facebook has one on
its main landing page (www.facebook.com) and one on a dedicated login page
(www.facebook.com/login.php). Should these login forms be considered as be-
ing for the same service? In the case of Facebook, both URLs are in the same
second level domain facebook.com, so the answer is probably yes. But what
about in a corporate intranet, where diverse services such as for submitting ex-
penses and time sheets are all likely to be under the same second level domain?

It might be argued that services should only be considered the same if they
have exactly the same URL. But what about the query string? Does that have
to match as well? What about the order of the query parameters? What about

amazon.co.uk
https://vimeo.com/log_in
www.facebook.com
www.facebook.com/login.php


4 Frank Stajano, Max Spencer, Graeme Jenkinson, Quentin Stafford-Fraser

dynamic URLs that provide alternative but equivalent encodings of the URL’s
query component? Any heuristic trying to shed light on this morass is likely to
get things wrong (at least some of the time). Should users really have to accept
that the computer doesn’t even know what service is being logged in to?

3 Incentives

Our proposal offers obvious advantages to users in terms of usability (you don’t
have to remember or type the passwords any more) and security2 (you can use
strong, distinct passwords). The advantages for password manager writers are
even clearer (without guesswork, code becomes simpler, more reliable and much
easier to maintain). Let’s thus spend a few words on the incentives for website
operators.

We believe it is in the best interests of website operators to support password
managers: the website users will gain in usability and security. If users, thanks to
password managers, adopted strong unique random passwords, website operators
would have much less to worry about confidentiality compromises of their hashed
password file.

We understand that website operators don’t want to allow bots to register
thousands of accounts and we support this goal. Any techniques the websites
may wish to use to ensure the presence of a human registrant (from CAPTCHAs
to telephone callbacks and so forth) will continue to be available. We are only
concerned with helping the human registrant store the password in a password
manager instead of having to remember it in their brain. Only websites with
delusions of grandeur may still believe that, regardless of all other demands on
the user’s memory and patience, their password is so important that it must be
uncrackably strong and different from any others and never written down. They
should study the Compliance Budget model [3], manage risks more maturely
and cure their superiority complex.

4 The PMF semantic markup

4.1 Overview

We propose adding “password-manager friendly” (PMF) semantic markup3 to
forms related to creating, accessing and managing user accounts, to simplify the
following tasks:

– Finding forms and determining their purpose (login, registration, etc.).
2 Users of password managers are still exposed to malware; we are not claiming that
the security offered by password managers is absolute (see section 5). Besides, our
proposal implicitly also supports higher-security password managers running on ded-
icated hardware.

3 The latest version (as well as a complete revision history) of the PMF specification
can be found at https://github.com/pmfriendly/pmf-specification.

https://github.com/pmfriendly/pmf-specification


Password-manager friendly (PMF) 5

– Finding the important inputs within the forms.
– Parsing password policies and generating valid new passwords.
– Detecting errors.

We adopt a simple and pragmatic approach used in other HTML microfor-
mats, of using semantic class names. A class attribute value can be specified for
any HTML element [4] and the use of semantic class names is supported by the
W3C [5]. We use the pmf prefix as a poor man’s namespace to avoid clashes with
programmer-defined class names. For example4, a login form is marked with the
pmf-login class:

<form action="/login" method="POST" class="pmf-login" >

Although form inputs have other attributes such as name and type which may
often give sufficient semantic information, standardised class values can be used
to remove any ambiguity5. For example, not all inputs with type="password"
are for long-term passwords: some are for one-time codes generated by hardware
tokens. Furthermore, as name attribute values are sometimes automatically gen-
erated by web frameworks or are specified by other standards such as OAuth
[7], use of these attributes could cause conflicts. In contrast, any HTML ele-
ment may have multiple classes [4], so our use of semantic class names ensures
interoperability.

4.2 Forms

Being able to reliably determine the type or purpose of a given form enables
a software agent like a password manager to offer a richer and/or more consis-
tent user experience. form elements should be marked with the semantic classes
specified in Table 1.

Table 1. Semantic classes for forms.

Form type Semantic class name
Login pmf-login
Registration pmf-registration
Change password pmf-change-password
Password reset pmf-reset-password

4.3 Inputs

Username Login and registration forms typically contain an input element
of type text or email for entering a username (which is often the user’s email
address). These inputs should be marked with the pmf-username class:
4 In these examples, grey highlights indicate PMF-related additions.
5 In section 5 we discuss the specification of the autocomplete attribute from the
HTML 5.1 working draft [6].



6 Frank Stajano, Max Spencer, Graeme Jenkinson, Quentin Stafford-Fraser

Username or email address:
<input type="text" name="user" class="pmf-username" />

Password resets and changes are tricky for a password manager because the
software cannot tell—in the case where a user may have multiple accounts with
the same website—which password is being changed. For example, a simple
experiment using Firefox’s built-in password manager and two Google accounts
reveals that, in some cases, the password manager must prompt the user to ask
which account they are updating the password for, even though they are already
logged in.

We propose that site authors should include a hidden-type field in these
forms, marked with the pmf-username semantic class and with its value set to
the username of the relevant account:

<form action="/reset" method="POST" class="pmf-reset-password" >

<input type="hidden" class="pmf-username" value="jimbojones"/>

...
</form>

Passwords Inputs for passwords typically appear in all four of the above form
types. Some password inputs, such as those in registration forms, are for new
passwords, while others are for existing passwords. These sub-types are unam-
biguously distinguished by the pmf-new-password and pmf-password semantic
classes respectively. It is useful to distinguish them because they appear together
in “change password” forms. These typically contains three password-type in-
puts, one for the user’s current password and two for their desired new password
(one to confirm the other). All three will have a different name attribute values
but, using semantic class names, the purpose of each input is made clear:

<form action="/change" method="POST" class="pmf-change-password" >

<input type="password" name="current" class="pmf-password" />

<input type="password" name="new" class="pmf-new-password" />

<input type="password" name="confirm" class="pmf-new-password" />

</form>

Stay signed in Many login forms include a “stay signed in” check box which
allows the user to control whether their session with a website should persist
across multiple browser sessions. If present, this input should be marked with
the pmf-stay-signed-in class:

Stay signed in?
<input type="checkbox" name="persist" class="pmf-stay-signed-in" />

Annotating the “stay signed in” check box allows a software agent to apply a
global policy on staying signed in for the user, across all websites. Many websites



Password-manager friendly (PMF) 7

tick the “stay signed in” box by default and users accept this. But, if their
password manager could apply a “never stay signed in” policy for them, they
may be happy for it to do so and thereby gain a valuable security (and privacy)
boost by not being permanently signed-in to their online accounts.

Another scenario in which this feature might be useful is the cybercafé: for
the benefit of the patrons, the web browsers installed on the public cybercafé
machines might be configured to disable the “stay signed in” feature by default.

Hidden inputs Forms often contain hidden-type input elements which are not
visible when the HTML is rendered6. As human users are normally unaware of
and cannot interact with these inputs, it is not useful for a software agent acting
on the user’s behalf to be able to interact with them either and we don’t propose
any additional markup.

4.4 Password composition policies

Large-scale password leaks have shown that many users optimise for memora-
bility and typing convenience rather than security, choosing trivially-guessable
passwords like 123456, qwerty or password. Password composition policies (“be-
tween 8 and 16 characters, of which at least one uppercase, one digit and one
symbol”) are an attempt to enforce generation of passwords that will be harder
to guess. Aside from their debatable effectiveness, one further problem with these
password policies is that websites do not offer them in machine-readable form,
which makes it hard for a password manager to generate a strong password that
is also compliant. A random machine-generated candidate password such as

LAxwHNDNSECcZ2IiNnEPUT1R"SsoyQ3kt8AEJCeCtjcw5eLv6+XsnfW3,

much stronger than any that a human would ever memorize or retype, would
be rejected by many websites because it exceeds the maximum allowable length,
or because it fails to include a character from the set !#$%&*, or because it
includes the disallowed character ", not to mention what websites would say
about characters outside the ASCII range—the study by Bonneau and Xu [9] of
passwords from users whose native language doesn’t fit into ASCII is instructive.

In a previous version of this work we defined a simple specification for a
machine-readable (JSON) description of a password composition policy, capa-
ble of expressing most commonly observed policies. Our intention was to avoid
forcing unnecessary changes on the back-end: much as we disliked restrictions
on password length7, we wanted webmasters to be able to make their website
6 The values of these hidden inputs are usually populated by the web server when
it generates the HTML of the page and then not changed on the client side. For
example web frameworks, such as Django [8], use them to implement Cross Site
Request Forgery protection.

7 Often just an indication that the back-end is not even hashing the passwords, as
observed by Bonneau and Preibusch [10].



8 Frank Stajano, Max Spencer, Graeme Jenkinson, Quentin Stafford-Fraser

PMF-compliant without having to change anything about their password com-
position policy: merely adding a machine-readable description of their existing
policy would be enough.

But we have since come to the conclusion that that strategy is sub-optimal.
There is really no reason for the back-end to impose restrictions on password
length on security grounds. If a password manager is generating and remember-
ing a password on behalf of the user, it should be allowed to make the password
as long and as complicated as it wishes. The password composition policy should
only apply to passwords generated and remembered by humans; but passwords
longer than a threshold t (say 64 characters from the base-64 subset) should be
considered as “non-human” and not subject to restrictions8. Sensible websites
will not have length restrictions in their password composition policy anyway;
those that do can become PMF-compliant simply by adding a conditional state-
ment to the tune of

if length > t then accept the password straight away.

This bold simplifying step from our side (PMF compliance requiring that pass-
words of unlimited length be allowed9) brings dramatic payoffs: it frees the web-
master from having to describe their policy in a machine-readable language
(because humans can be served by the human-readable version and machines
can just generate a sufficiently long random string) and it frees the password
manager developer from having to write a parser for the policy.

The machine-generated passwords will be strong, random and too long to
be memorized or transcribed: they will look similar to the one shown at the
beginning of this section. For situations where users may need to access the
website without being supported by their usual password manager, they are free
to choose less complex passwords that can be memorized or at least transcribed.
Such passwords will not fall into the “beyond t characters” exclusion and will
still have to comply with the website’s traditional password composition policy
intended for human-chosen secrets.

We believe that this is a better strategy than our previous one of making the
policy machine-readable. By minimizing the amount of work that each party has

8 This is not to say that humans could never use passwords or passphrases of that
length, or that passwords of that length are necessarily always unguessable. What
we mean instead is that, once we agree that a competent and non-malicious agent is
generating strong random passwords, once we go beyond t characters then further
checks are not necessary nor useful.

9 In our latest PMF specification, besides always requiring the semantic markup de-
scribed in the other sections, we define full PMF compliance as requiring that the
policy accept passwords of length over t regardless of their composition but we still
grant partial compliance to websites that don’t implement this exception. Partially
PMF compliant sites still allow reliable automated interaction for login, even though
they don’t guarantee that the software agent will be able to define a compliant strong
password.



Password-manager friendly (PMF) 9

to do to become PMF-compliant10 we maximize the chance that PMF will be
adopted.

4.5 Errors

As mentioned previously, determining whether a login attempt (or other action)
was successful or not is a difficult problem for software agents, because at the
HTTP layer a “200 OK” status code is returned in both cases. The user is in-
formed of any problems using prominent human-readable error messages within
the returned HTML page, but we would like these messages to be just as easy
to find for machines.

We propose marking these error messages with the pmf-error semantic class
name to make them trivial for software agents to find:

<p class="pmf-error" >Incorrect username and/or password</p>

5 Related work

In parallel with our work on PMF, a proposal has been added to the HTML 5.1
working draft [6] which may achieve similar goals in future browsers. The HTML
5.1 draft specifies a new range of values for the “autocomplete” attribute for
input elements. The autocomplete attribute disambiguates the semantic meaning
of inputs in a similar way to our PMF semantic class names. It’s not clear when
this will be widely implemented but, in the meantime, our simple solution can
be adopted immediately without compatibility concerns, since an input element
could specify an autocomplete attribute value as well as a PMF semantic class
name.

The innovative Stanford password policy of 2014 [11] is length-dependent: it
imposes no restrictions on the characters of passwords above a certain length
(20 characters), while prescribing stricter and stricter composition rules for pro-
gressively shorter passwords, and forcing a minimum length of 8 characters. It
would already be PMF-compliant.

Bonneau and Preibusch’s [10] comprehensive review of the authentication
landscape on the web argues that some sites deploying passwords do so primar-
ily for psychological rather than security reasons. For example, they speculate
that password-protecting accounts serves as a justification for collecting market-
ing data and as a way to build trusted relationships with customers. Whatever
the underlying reasons, it is apparent that the number of password-protected
accounts an average user manages has increased markedly since the advent of
the web. Florencio and Herley [12] report that the average user has 6.5 pass-
words, each of which is shared across 3.9 different sites. Furthermore, each user
10 Note how our new requirement of adding the “if length > t” statement to the policy

may at some level represent a more significant change to the website but in prac-
tice involves much less work than our old requirement of accurately expressing the
existing password composition policy in machine-readable form.



10 Frank Stajano, Max Spencer, Graeme Jenkinson, Quentin Stafford-Fraser

has about 25 accounts that require passwords. Without the reported level of
password reuse, managing 25 separate accounts with unique random passwords
is barely imaginable for most users.

A password manager, either as a separate program such as PasswordSafe
[13] or integrated with or in the browser, is now a well established solution
for managing the increasing burden password-based authentication on the web.
Given the increasing reliance on password managers11, a recent thread of research
has investigated their security properties.

Gasti and Rasmussen [14] investigate the security properties of the password
database formats used in range of popular password managers. They define two
new games to analyse the security of password manager databases: indistin-
guishability of databases (IND-CDBA) game and chosen database (MAL-CDBA)
game; the indistinguishability of databases game models the capabilities of a re-
alistic passive adversary, and the chosen database game models the capabilities
of an active adversary able to both read and write the password database file.
Google Chrome stores plaintext username/passwords in the user’s profile direc-
tory. As a result, an attacker can trivially win both the IND-CDBA and MAL-
CDBA games with Chrome as the Challenger. Firefox also fails both games;
however, Firefox optionally allows users to encrypt the passwords stored in the
password managers database under a user-supplied master key. This option pro-
vides at least some security benefits over Google Chrome’s password manager,
even if the full benefits of indistinguishability under the IND-CDBA and MAL-
CDBA games aren’t afforded. Gasti and Rasmussen’s analysis concludes that,
among the systems they studied, only PasswordSafe v3 [13] is invulnerable to
attackers under the IND-CDBA and MAL-CDBA security models.

Silver et al [15] identify a class of vulnerabilities exploitable when using
several popular passwords managers. They consider a threat model where a
user connecting to the Internet via an access point, such as a WiFi hotspot,
which is controlled by the attacker. Under this model the attacker is able to
inject, block and modify packets on the network. The attacker’s goal is to extract
passwords stored by the password manager without further action from the user.
The attacks presented by Silver et al rely on exploiting the password manager
auto-filling policies: for example, the password manager can be coerced into auto-
filling forms in invisible iframes embedded within the WiFi hot-spot’s landing
page.12

Li et al [16] analysed the security of five popular integrated password man-
agers (that is, password managers integrated with or in the web browser). Four
key concerns with browser-based password managers were identified in this

11 As an example, 1Password alone is estimated to have a install base of 2 to 3 million
users.

12 Auto-filling of forms by the password manager improves usability and therefore,
before mitigating this vulnerability by disabling the auto-filling, careful consideration
is needed of the inherent trade off between security and usability. We shouldn’t lose
sight of the fact that normal users don’t have threat models; therefore, simply asking
them whether they want to enable or disable auto-filling is a bit of a cop out.



Password-manager friendly (PMF) 11

study: bookmarklet vulnerabilities, web vulnerabilities, authorisation vulnerabil-
ities and user interface vulnerabilities. Bookmarklet13 vulnerabilities, introduced
by Adida et al [17], result from the bookmarklet’s code running in a JavaScript
environment potentially under the control of an attacker. Li et al show that such
vulnerabilities are still widespread in popular password managers. The web vul-
nerabilities identified by Li et al consist of well know cross-site request forgery
(CSRF) and cross-site scripting (XSS) attacks. The authorisation flaws identi-
fied by Li et al result from sloppy implementations. User interface vulnerabilities
can be considered as phishing attacks against the password manager itself. In
cases where the user is not authenticated to their password manager, a num-
ber of in-browser password managers automatically open the login form for the
password manager in an iframe. Users have no means to differentiate between
this behaviour and a phishing attack.

Password managers should be considered as tactical solutions, alleviating
some of the gross security and usability failings of passwords. Pico [18] is a
strategic solution seeking a more usable and secure replacement for passwords
everywhere they are used (not just on the web). Recent work on Pico has at-
tempted to provide a mechanism that can work alongside passwords [19]. The
Pico bootstrapping technologies, whilst not being a password manager in the
classic sense, are required to parse and automatically submit login forms on the
user’s behalf and would thus also benefit from our semantic annotations.

6 Conclusions

All password managers rely on fallible heuristics and complex code which is
never fully accurate and requires constant updates. This entails wasteful repli-
cation of efforts by every password manager developer and reduces the value of
password managers to users. We argue that all parties would benefit if websites
offered a standard interface to password managers, enabling consistent and accu-
rate agent-supported password creation, registration and login, without brittle
programmatic guesswork.

Our PMF proposal, of augmenting a website’s password pages with simple
and unambiguous machine-readable semantics, makes the operation of password
managers much simpler and more reliable. Users benefit from reduced cognitive
load and reduced typing burden. Reliable generation of strong random pass-
words increases security for both users and websites. A well-defined interface
eliminates guesswork and makes the password manager code leaner and much
easier to maintain. We feel PMF is beneficial for all parties involved: users,
website operators, password manager developers. We will be pleased to work
with developers of websites, browsers and password managers, as well as with
standards bodies, to promote its widespread adoption.
13 A bookmarklet is a bookmark containing JavaScript that can be used to extend a

web browser’s capabilities. Bookmarklets have advantages over alternatives such as
addons or extensions as they are cross browser and are managed by the user like
bookmarks.



12 Frank Stajano, Max Spencer, Graeme Jenkinson, Quentin Stafford-Fraser

7 Acknowledgements

We gratefully acknowledge the European Research Council for funding this re-
search under grant 307224 (Pico).

References

1. Pinterest. https://pinterest.com Accessed: 2014-11-07.
2. OWASP: Cross-site request forgery (csrf) prevention cheat sheet.

https:///www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%
29_Prevention_Cheat_Sheet (August 2014) Accessed: 2014-11-06.

3. Beautement, A., Sasse, M.A., Wonham, M.: The compliance budget: Managing
security behaviour in organisations. In: Proceedings of the 2008 Workshop on New
Security Paradigms. NSPW ’08, New York, NY, USA, ACM (2008) 47–58

4. Hickson, I., Berjon, R., Faulkner, S., Leithead, T., Doyle Navara, E., O’Connor,
E., Pfeiffer, S.: HTML5. Recommendation, W3C (October 2014)

5. Stuven, Sybrel (W3C): Use class with semantics in mind. http://www.w3.org/
QA/Tips/goodclassnames Accessed: 2014-11-07.

6. Berjon, R., Faulkner, S., Leithead, T., Doyle Navara, E., O’Connor, E., Pfeiffer,
S., Hickson, I.: HTML 5.1. Working draft, W3C (2014)

7. Hardt, D.: The OAuth 2.0 Authorization Framework. RFC 6749 (Proposed Stan-
dard) (October 2012)

8. Django documentation: Cross Site Request Forgery protection. https://docs.
djangoproject.com/en/1.7/ref/contrib/csrf/ Accessed: 2014-11-07.

9. Bonneau, J., Xu, R.: Of contraseñas, sysmawt, and mìmǎ: Character encoding
issues for web passwords. In: Web 2.0 Security & Privacy. (May 2012)

10. Bonneau, J., Preibusch, S.: The password thicket: technical and market failures in
human authentication on the web. In: WEIS 2010. (2010)

11. Stanford University. https://itservices.stanford.edu/service/accounts/
passwords/quickguide Accessed: 2014-11-07.

12. Florencio, D., Herley, C.: A large-scale study of web password habits. In: Proceed-
ings of the 16th International Conference on World Wide Web. WWW ’07, New
York, NY, USA, ACM (2007) 657–666

13. Schneier, B.: Password safe. https://www.schneier.com/passsafe.html Ac-
cessed: 2014-11-06.

14. Gasti, P., Rasmussen, K.B.: On the security of password manager database formats.
In: ESORICS. (2012) 770–787

15. Silver, D., Jana, S., Boneh, D., Chen, E., Jackson, C.: Password managers: Attacks
and defenses. In: 23rd USENIX Security Symposium (USENIX Security 14), San
Diego, CA, USENIX Association (August 2014) 449–464

16. Li, Z., He, W., Akhawe, D., Song, D.: The emperor’s new password manager:
Security analysis of web-based password managers. In: 23rd USENIX Security
Symposium (USENIX Security 14), San Diego, CA, USENIX Association (August
2014) 465–479

17. Adida, B., Barth, A., Jackson, C.: Rootkits for javascript environments. In: Pro-
ceedings of the 3rd USENIX Conference on Offensive Technologies. WOOT’09,
Berkeley, CA, USA, USENIX Association (2009) 4–4

18. Stajano, F.: Pico: no more passwords! In: Proceedings of the 19th international
conference on Security Protocols. SP’11, Berlin, Heidelberg, Springer-Verlag (2011)
49–81

https://pinterest.com
https:///www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
https:///www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet
http://www.w3.org/QA/Tips/goodclassnames
http://www.w3.org/QA/Tips/goodclassnames
https://docs.djangoproject.com/en/1.7/ref/contrib/csrf/
https://docs.djangoproject.com/en/1.7/ref/contrib/csrf/
https://itservices.stanford.edu/service/accounts/passwords/quickguide
https://itservices.stanford.edu/service/accounts/passwords/quickguide
https://www.schneier.com/passsafe.html


Password-manager friendly (PMF) 13

19. Stajano, F., Jenkinson, G., Payne, J., Spencer, M., Stafford-Fraser, Q., Warrington,
C.: Bootstrapping adoption of the pico password replacement system. In Chris-
tianson, B., Malcolm, J.A., Matyás, V., Svenda, P., Stajano, F., Anderson, J., eds.:
Security Protocols XXII - 22nd International Workshop Cambridge, UK, March
19-21, 2014 Revised Selected Papers. Volume 8809 of Lecture Notes in Computer
Science., Springer (2014) 172–186


	Password-manager friendly (PMF):Semantic annotations to improve the effectiveness of password managers

