
Approaches for Software Verification of an
Emergency Recovery System for Micro Air Vehicles∗

Martin Becker, Markus Neumair, Alexander Söhn, and Samarjit Chakraborty

Institute for Real-Time Computer Systems
Technische Universität München, Arcisstr. 21, 80333 Munich, Germany

{becker,mneumair,asoehn}@rcs.ei.tum.de,samarjit@tum.de

Abstract. This paper describes the development and verification of a compet-
itive parachute system for Micro Air Vehicles, in particular focusing on verifica-
tion of the embedded software. We first introduce the overall solution including
a system level failure analysis, and then show how we minimized the influence of
faulty software. This paper demonstrates that with careful abstraction and little
overapproximation, the entire code running on a microprocessor can be verified
using bounded model checking, and that this is a useful approach for resource-
constrained embedded systems. The resulting Emergency Recovery System is
to our best knowledge the first of its kind that passed formal verification, and
furthermore is superior to all other existing solutions (including commercially
available ones) from an operational point of view.

Keywords: remotely-piloted aircraft systems, multicopter, safety, parachute,
software verification, formal analysis

1 Introduction
In the recent years, Micro Air Vehicles (MAVs) such as quadrocopters, hexacopters,
etc., are a rapidly growing class of airspace users. As of January 2015, we estimate
the number of light MAVs (<5 kg) to be at least 1.6 million in Europe1, possibly even
one magnitude higher due to the plethora of manufacturers and custom builds. In
comparison, this is more than quadruple the number of aircraft in general aviation
worldwide [1], and soon, if not already, the daily flying hours will also catch up, thanks
to a growing number of civil use cases.

However, in contrast to aircraft in general aviation, MAVs are usually not subject to
in-depth safety considerations, but tend to have a high probability of failure. This comes
from the nature of these systems: They are open for modifications, little analyzed, and
often not fully understood by their operator. Together with the omnipresence of those
vehicles, this results in a considerable potential of MAVs endangering their environment.

Whatever solution is chosen to increase the level of safety, it has to be tailored
towards those low-cost, mass-market systems. Imposing certification rules on the entire
MAV, such as DO-178C for civil A/C software, could eventually hold back a number
of desirable use cases. For example, certification could require redundancy in the flight
controls, which would decrease payload capacity and thus render some applications
infeasible. Last but not least, low cost is also a key for those platforms, which generally
contradicts a full-system certification.

In this paper, we describe our experiences in developing a light-weight recovery
system which increases the operational safety of MAVs and is nevertheless amenable to
certification, independently from the internal structure of the MAV. It is a hardware-
software solution based on a parachute, which can bring down the MAV safely, avoiding
loss of the MAV in case of malfunctions, and minimizing collateral damage. Our system

∗The final publication will be available at Springer via http://dx.doi.org/10.1007/

978-3-319-24249-1_32, in Computer Safety, Reliability and Security, 34th International Con-
ference SAFECOMP 2015, F. Koornneef and C.v. Gulijk (Eds.), Delft, Netherlands, 2015.

1Based on the number of DJI sales and their growing business figures over the last years.
This is also supported by the number of and growth rate of registered MAVs at the federal
agencies around Europe, and their estimated number of unreported vehicles [18].

ar
X

iv
:1

50
6.

07
86

7v
2 

 [
cs

.S
E

] 
 8

 J
un

 2
01

7

http://dx.doi.org/10.1007/978-3-319-24249-1_32
http://dx.doi.org/10.1007/978-3-319-24249-1_32


Parachute

Ejection Sensor

Spring

Lock Pin

Fig. 1. Prototypes of our Emergency Recovery System mounted on a hexacopter (left) and
deployed on a quadrocopter (right).

is a “plug and play” solution, i.e., it can be retrofitted to existing MAVs with only one
single interface (the power connector) and has little impact on the flight performance.

In the following we first explain the overall solution, and then focus on the verifi-
cation of the embedded software, which is the most complex part, and meanwhile the
main contributor towards the effectiveness of the proposed solution.

2 Related work

MAV Safety Systems: In general, the safety systems available by today are either
specific to the MAV brand, incomplete, or require radical modifications to the existing
MAV. For example, there are MAVs that ship with a parachute system, such as the
MCFLY-Helios [9], or others which can be extended with OEM parachute systems,
such as the “DropSafe” for the DJI Phantom [8]. However, being tightly integrated
with their specific MAVs, the trigger conditions are not made public, and there is
no formal proof illustrating the increased overall safety. Moreover, they require CO2

capsules and a backup battery, as opposed to our solution. Other available systems are
“operated” solutions, such as the Opale [15], SKYCAT [17] or MARS [13] parachute
systems. They only support a manual release, do not switch off the MAV propulsion
and require, as the others before, a working power supply in case of emergency.

There are also more local approaches to increase the safety of subsystems, such as
robust control algorithms by Mueller and D’Andrea [14]. Their algorithms can cope
with partial loss of propulsion whilst keeping the MAV in a controlled flight. However,
not only do they require a lot of insight into and modification of the MAV, they also
demand significant non-local changes, as for example the provisioning of safety margins
in the propulsion (e.g., more thrust per motor, higher peak current etc.). Eventually,
those margins make the MAV inefficient under normal conditions, but still only cover
a subset of all possible MAV failures.

The parachute solution that we propose offers similar operational limits than the
mentioned automatic systems, but is MAV-independent and covers the maximum num-
ber of failure conditions among the mentioned solutions, and at a lower weight. Addi-
tionally, through the verification shown here, we have evidence that the overall MAV
safety is indeed increased, as opposed to all other solutions.
Verification of Code Running on Microprocessors: Model-checking the entire C
code running on microprocessors has been reported only a couple of times, e.g., with
cbmc on an ATmega16 processor in [16] and on an MSP430 in [4], but either it failed
because of state space explosion and missing support for concurrency, or succeeded only
for smaller programs.

However, recent developments that turn concurrency into data nondeterminism [11],
spot race conditions [20] and support for interrupts in cbmc [4] can solve the concur-
rency issues and make bounded model checking an interesting approach. In this paper
we take together all these ideas, point out problem with those, and propose abstractions
which mitigate the state space explosion, enabling a workflow which allows verifying
an entire real-world program running on a microcontroller.



3 Challenges
The main design challenge for this system is to maintain a low weight, since this directly
translates into flight time. This however means we can introduce redundancy only where
inevitable for safety.

Second, to make the system work independently of MAV internals, it implies that
the interface to the MAV must be minimalist. Standard approaches known from avion-
ics like triplex controllers (see [2, p. 88]) with its internal data consolidation are too
intrusive and therefore not an option.

The biggest challenge however, is deciding whether there is an emergency, and
triggering the recovery independently of the pilot. A software implementation is the
natural choice, since this allows for iterative development and parametrization for the
specific MAV. This software is then safety-critical, since it directly influences whether
crashes can be avoided or not. Through this, the quality of the software will drive the
quality of the overall solution. That is why in this paper our main concern is a formal
verification of the software, which is known to be challenging, especially because this
software interacts with its physical environment.

4 Proposed Emergency Recovery System for MAVs
Our proposed Emergency Recovery System (ERS) is shown in Fig. 1, both on a quadro-
copter and a hexacopter. It is a parachute system, designed to increase the overall safety
of the MAV. In case of an emergency (what constitutes an emergency is described later),
the ERS automatically turns off the propulsion and deploys a parachute. The technical
specifications are given in Table 1.

Table 1. Specifications of the Emergency Recovery System.

Property Value

total weight 320 g
input voltage 6. . . 25.2 V (2. . . 6 LiPo cells)
power consumption < 3 W depending on propulsion state
worst-case trigger time ≤140 ms
terminal speed & min. altitude 4.5 m/s within 10 m

No modifications to the existing MAV are required, e.g., neither altering the flight
controller nor the propulsion system. Our system effectively acts as a power proxy
between MAV battery and MAV. The only (necessary) interface for our ERS is the
power connector, which is why we call it a “plug and play” solution. A second optional
interface is for one RC channel, allowing the pilot to trigger the parachute manually.

4.1 Internal Structure

The ERS consists of the following three components, also illustrated in Fig. 2:

– Emergency Detection Unit (EDU): A Printed-Circuit Board (PCB) with sen-
sors and a microprocessor running software to detect emergencies. In case it detects
an emergency, it can trigger the ejection of the parachute.

– Power Switch (PS): A PCB with power electronics, acting as a proxy between
the MAV’s battery and the propulsion. In case of emergency, it cuts off the power.

– Parachute Unit (PU): This is a housing holding the parachute. It is also com-
prising an ejection sensor and an electro-magnetic (EM) lock, which, when opened
or powerless, releases a compressed spring, which in turn ejects the parachute.

Mode of Operation: The EDU features an Atmel ATmega 328p microprocessor (Har-
vard, 8 MHz, 32 kB Flash, 2 kB RAM, no caches), a barometer sensor and an accelerom-
eter sensor. The embedded software evaluates those sensors periodically, and estimates
the MAV’s air state. When it detects emergency conditions, it triggers the parachute
ejection by emitting a RELEASE signal, which opens the EM lock. This releases a com-
pressed spring, which can now eject the parachute from its housing. Simultaneously,
when the parachute is pushed out, an ejection sensor detects this and sends a POWEROFF
signal to the Power Switch. This ensures, that the MAV’s propulsion is deactivated as
soon as the parachute is ejected.



Power 
Switch

Electro-
Magnetic 

Lock

Para-
chute

MAV
Battery

MAV 
Propulsion

VCC_MAV

VCC_lock

POWEROFF
Parachute Unit

RELEASE

tensioned 
spring

Ejection
Sensor

Emergency 
Detection

Unit

Embedded 
software

Formal
verification

01011
0010011111

Fig. 2. Internal Structure of our Emergency Recovery System: The Emergency Detection Unit
on the top right is running the to-be-verified software.

Emergency Conditions: The root causes for failure in MAVs are wide-spread. Due to
tight integration of functionality and – as explained before – the imperative minimalism
in redundancy, even errors in non-critical components can evolve quickly into fatal
failures. Therefore, it seems more efficient to apply a holistic monitoring, instead of
monitoring single components. Accordingly, an emergency is considered as the MAV
being uncontrolled, that is, when the pitch or roll angles exceed user-defined thresholds,
or when the descent rate gets too high. These conditions cover the most important
malfunctions, such as FCS failure (e.g., badly tuned controllers or error in software
logic), electrical or mechanical failure of propulsion (propeller, ESC), loss of power and
partially even human error (in the form of initiating an uncontrolled state).

5 System Level Failure Analysis
Although this paper focuses on software verification, we briefly explain the failure
analysis at system level, to show the influence of the software on the overall safety.

We designed our ERS to make it fail-safe together with the MAV w.r.t. any single-
failure event, i.e., a MAV equipped with our ERS can tolerate at least one statistically
independent failure without leading to a crash. Towards that, we repeatedly conducted
a Fault Tree Analysis during the design process of the ERS.

In Fig. 2 we highlighted a built-in fail-safe loop between power switch, EM lock,
parachute and ejection sensor. It creates a circular dependency between its components.
If any of them fails (e.g., broken power switch), then this also leads to the ejection of
the parachute, thus covering failures that may occur in the ERS itself. The effects of
different failure scenarios can be seen in the Fault Tree in Fig. 3.
Considered MAV Failures: The MAV was treated as a black box with two possi-
ble failures (grey in the figure) “MAV failure with power” and “MAV failure without
power”. The first one means, that the MAV is in an uncontrolled state but still powered
(e.g., broken propeller and resulting loss of control), whereas the latter one means, that
the MAV lost power (e.g., due to battery failure or electronic defects), which naturally
results in an uncontrolled state as well. We are not concerned with the MAV being
powered up in a controllable state (no error), or being in a controllable but unpowered
state (impossible for multicopter configurations).
Influence of the Software: The Fault Tree is depicted in Fig. 3. It can be seen, that
the three uncontrolled system states which lead to a crash, can only be reached if at
least two failures occur at the same time. As indicated with the color coding, there are
four categories of failures: a) mechanical failure in ERS (red), b) electronics failure in
ERS (orange), c) software failure in ERS (green) and d) MAV failure (white). Although
there are many kinds of errors possible in software, from a system point of view we are
only interested in the two consequences depicted in the Fault Tree:

1. Emergency Detection False Negative: The embedded software does not trigger
the emergency sequence despite emergency conditions.

2. Emergency Detection False Positive: The embedded software does trigger the
emergency sequence without emergency conditions.



CRASH

Uncontrolled drop
Motors off, 

no Parachute

Uncontrolled state
Motors on 

Parachute active

MAV failure 
w/ power

Parachute not 
deployed

Emergency 
Detection

False Negative

Uncontrolled state
Motors on, 

no Parachute

Mechanical
release 

w/o trigger

Ejection 
sensor: never 

indicate 
release

Emergency 
Detection

False Positive

ERS electronics failure

ERS software failure

ERS mechanical failure

MAV failure

Parachute
mech.
stuck

Parachute
mech.
stuck

Power switch: 
ignores 

POWEROFF

Parachute
deployed

Power switch
does not disconnect

MAV in
free fall

SYSTEM
STATE

Uncontrolled
air state

Power 
switch: 

untriggered 
power cut

MAV failure
w/ power

MAV failure
w/o power

Fig. 3. Fault Tree for the top event “crash”, valid for any electric Micro Air Vehicle equipped
with our Emergency Recovery System.

While both software failure events can have the same impact at system level (both can
lead to crash if a second failure occurs), the case of a False Negative is practically more
critical, since MAV failures with power are more likely than a second independent failure
occurring in the ERS. Furthermore, the ERS runs self-checks during initialization,
reducing the probability of being used in the presence of internal failure. For these
reasons, our verification efforts that we explain in the next section, focused on (but
were not limited to) finding defects that lead to False Negatives.

6 Software Verification
Safety-critical systems in general must be free of defects that can lead to errors in
behavior. Here, traditional testing is not favorable, since only a full coverage of all
possible executions could guarantee absence of defects, which implies modeling the
system’s environment in a test harness. That especially holds true for our ERS, where
the functionality strongly depends on timing and the interaction with its environment.
Testing specific cases would require simulating the environment, as well as the sensors
and the microprocessor running the software. On top of that, in our system we cannot
afford any redundancy due to weight reasons, which is why we need to identify all
defects in the software.

Consequently, we aimed for a toolchain that supports formal verification of C code
based on static analysis. While there are multiple tools that one could choose for that
task (e.g., Frama-C [7], Astrée [6], BLAST [10], Polyspace, etc.), we have selected
cbmc and related tools [5], because they support concurrency to some extent, are freely
available (and thus can be extended if necessary) and also widely used. More model
checkers for C code were compared in [16] and [3].

Software Structure: The software running on the EDU can be partitioned into four
sequential parts:

1. Initialization: Initializes all sensors, and captures environmental conditions (e.g.,
pressure at ground level). When completed, the ERS switches to self-check mode.

2. Self-Check: To ensure that there is not already a failure in the ERS during start-
up, we added built-in self tests covering the major subsystems of the ERS. When
completed, the ERS switches to detection mode.

3. Detection: The software periodically reads all sensors and estimates the MAV’s air
state. If the emergency conditions apply, the EM lock is released and the software
switches to emergency handling mode.

4. Emergency Handling: Current sensor data and decision conditions are written
to EEPROM, to enable a post-flight analysis.



Micro-
processor

Barometer Accelerometer

TW
I

UART INT0

Manual Trigger 
signal from RC

Maintenance
console Main thread

ISR main 
Timer

ISR INT0 ISR UART

ADC0

Voltage from 
power switch

DO

Electro-
magnetic lock

WCET 
watermark,

period timer

Manual 
trigger state

Incoming 
data

Fig. 4. Microprocessor with interfaces to its environment (left) and the resulting concurrency
in the software (right).

The sensors and actuators are connected to the microcontroller as depicted in Fig. 4
on the left. The interfaces impose some concurrency in the software, which is shown on
the right. For example, the maintenance console and manual trigger signal both require
interrupts (polling would be too slow), thus each introduces one thread concurrent to
the main program. Additionally, a timer interrupt is used to support a time-triggered
execution of the detection loop, contributing one further thread.
Proper Timing: The mentioned concurrency poses the first verification task. To en-
sure that the detection loop always runs at the desired rate – which is important for
correctness of computed data, e.g., the descent rate – we need to show that the required
computations can be completed before the next period begins.

Towards that, the worst-case execution time (WCET) of the main loop must be
determined. Here we took a dual approach: On one hand, we performed a static WCET
analysis with a freely available analyzer tool [19], but we also monitor the execution
time on the microprocessor with a high watermark.

For the static analysis we made the assumption that the sensors are healthy, and
follow their datasheets’ timing specification. The resulting WCET was 2.7 ms for the
detection loop, which is well below the 5 ms-period in the EDU. However, interrupts
also need to be considered. The worst-case response time (WCRT) is (in this context)
the maximum amount of time that the detection loop needs to finish processing, under
the preemption of interrupts. Only if the WCRT is less than the period, then it can be
concluded that the timing is correct.

However, without further provisions the minimum inter-arrival time (MINT) for
the event-based interrupts (manual trigger from RC, UART) have no lower bound, i.e.,
it would be possible that a broken RC receiver or UART peer could induce so many
interrupts, that the detection could never execute, resulting in an unbounded WCRT.
To avoid this situation, the inter-arrival times of all event-driven interrupts are also
measured in the microcontroller. If an interrupt occurs more often than planned, the
attached signal source is considered failing, and the interrupt turned off.

With these bounded MINTs and the WCET values from the static analysis, a
standard response time analysis yielded a WCRT of 2.89 ms for the detection loop.
Again, this is for the case of healthy sensors.

The purpose of the high watermark is to detect those cases when sensors are failing,
but also to gain confidence in the above analysis. The response time of the detection
loop is continuously measured using a hardware timer, and maximum values are written
to EEPROM. With rising number of flying hours, the watermark should approach the
WCRT. If it exceeds the statically computed WCRT, then a sensor failure is likely,
which triggers the emergency sequence.

In practice, the watermark measurements were observed approaching the statically
computed WCRT up to a few hundred microseconds with healthy sensors, thus giving
confidence in the analysis. By construction of the software, it can be concluded that the
timing of the detection loop is correct, unless the parachute is deployed. However, there
are more timing-related issues to be considered, namely, the time-sensitive effects of
interrupts upon the control flow in the main program. This was addressed later during
the verification process.



Proper Logic: The ultimate goal of the software verification is to ensure that the
emergency detection algorithm works as intended. As explained before, the main con-
cern was to avoid False Negatives, i.e., the error that the embedded software does not
trigger the emergency sequence, despite emergency conditions.

An obvious reason for such failure is, that the software is not running because it
crashed or got stuck. This can be a consequence of divisions by zero, heap or stack
overflow2, invalid memory writes, etc. Note that a reboot during flight is not possible,
since the initialization and self-checks need user interaction (open and re-close the ejec-
tion sensor to ensure it works correctly), and making them bypassable is not desirable
for practical safety reasons. Therefore, crashes and stuck software have to be avoided.

The second reason for not recognizing an emergency is an incorrectly implemented
detection algorithm. This entails both an error in decision taking (i.e., which sensor has
to tell what in order to classify it as emergency), and also numerical problems (e.g.,
overflows) in data processing. Identifying these kinds of problems also decreases the
number of False Positives.

The majority of those defects is checked automatically by cbmc, if requested during
instrumentation. The correctness of the decision taking part, however, must be encoded
with user assertions. Since our detection loop runs time-triggered, properties such as
“latest 100 ms after free fall conditions are recognized, the parachute shall be deployed“
can be encoded with some temporary variables. With that, verification of arbitrary
properties of the decision algorithm follows the same workflow as the automatically
instrumented properties, which is why we do not elaborate on the specific properties
that were eventually verified, but rather show how we set up the workflow correctly.

6.1 Verification Workflow

The toolchain that we set up around cbmc is shown in Fig. 5. We start with a C
program, written for the target. First, we run fast static checkers such as splint on the
program, to identify and remove problems like uninitialized variables, problematic type
casts etc. Not only does this help to avoid defects early during development and thus
to reduce the number of required verification runs later on, but also it complements
the verification. For example, the semantics of an uninitialized variable depends on the
compiler and the used operating system (if any); cbmc, however, regards these variables
as nondeterministic and therefore overapproximates the program without a warning.

After passing the fast checks, the C code is given to goto-cc, which translates it into
a GOTO-program, basically a control flow graph. During this process, all the macros
in the C code are resolved by running the host compiler up to the preprocessing stage.

The GOTO-program is subsequently fed into goto-instrument, which adds assert
statements according to user wishes. For example, each arithmetic multiplication can
be checked for overflow, array bounds can be ensured, etc. Note that the original code
may contain user-defined assert statements, which are preserved.

The resulting instrumented GOTO-program is finally handed over to cbmc, which
performs loop unwinding, picks up all assert statements, generates VCCs for them and
– after optional simplifications such as slicing – passes the problem to a solver back-end
(we use MiniSat2 ; SMT solvers like Z3 and Yices, are recent additions to cbmc).

After the back-end returns the proofs, cbmc post-processes them and provides a list
of verified properties, and for each refuted one a counterexample. These lists can be
used to fix defects in the original code, clearing the way for the next iteration.

6.2 Missing Architectural Information

A problem in static verification is implicit semantics that depends on the target, for
example that certain functions are set up as interrupt service routines (ISRs) and thus
their effect needs to be considered, although they never seem to be invoked. Another
example is memory-mapped I/O, which may seem like ordinary reads from memory,
but in fact could inject nondeterministic inputs from the environment.

2Heap was not used, and stack size was checked with Bound-T.



C program + 
assumptions

Preprocessing
(target compiler + 
modified goto-cc)

Arch. information 
(word width, etc)

Fast Analyzers
(splint, cppcheck, 

custom)

GOTO 
program

Build 
settings

Instrumentation
& Slicing

(modified goto-
instrument)

instrumented
GOTO 

program

Model 
Checking
(modified 

cbmc)

Selected checks
(overflow, race, ...)

Solver 
settings

Equivalent C 
program

manual sanity checks

Unreachable 
Properties

Refuted 
Properties

Verified 
Properties

Cycle
Graph

Loop 
Bounds

List of 
Properties

Arch. Information 
(ISRs, MMIO, ...)

Manual
fixes

UNSAT
assumptions

Bug 
report

Fig. 5. Workflow for formal verification of the embedded software written in C.

Neglecting such context can easily lead to a collapsing verification problem and
result in wrong outcomes. In our program, there were initially 351 properties, from
which 349 were unreachable due to missing contextual information. Annotating all the
necessary places manually is an error-prone labour, which bears the risk of having
wrong or missing annotations and more importantly it is practically infeasible for our
small program already. In the following we discuss how we addressed this problem.
Accounting for Interrupts: The preprocessed C code contains the ISR definitions,
but naturally no functions call to them. The ISR is only called because its identifier is
known to the cross compiler, and because particular bits are being written to registers
at the start of the program; something that the model-checker lacks knowledge of. Con-
sequently, it concludes that the ISR is never executed, and – through data dependencies
– our detection algorithm seems to be never executed. This makes all properties within
that algorithm unreachable and thus incorrectly evaluates them as “verified”.

To overcome this, a nondeterministic invocation of the ISR must be considered at
all places where shared variables are being evaluated, as described in [4]. This can be
done with goto-instrument as a semantic transformation (flag --isr). Fig. 4 shows the
respective data that depends on interrupts in our case. Unfortunately, this technique not
only grows the to-be-explored state space, but it even overapproximates the interrupts:
The ISR could be considered too often in the case when the minimum inter-arrival time
is longer than the “distance” of the nondeterministic calls (e.g., ISR for periodic timer
overflow) that have been inserted. However, even if we would include execution time
and scheduling information from parts of the main thread (to be computed by WCET
and WCRT tools), the points in time where the ISR is called could be drifting w.r.t. to
the main thread. This is true even for perfectly periodically triggered programs, solely
due to different execution paths in the main thread.
Nondeterminism from Frequency-Dependent Side Effects: There exists another
problem with interrupts that has not been addressed in [4] nor in goto-instrument. It
stems from the frequency-dependent side effects of ISR invocation: In general, interrupts
could also execute more often than the places where nondeterministic calls have been
considered before. If there exist side effects other than changes to shared variables
(i.e., if the ISR is non-reentrant in general), this can break the correct outcome of
the verification. For example, ISRs that on each invocation increment some counter
variable which is not shared with any other thread, could then in reality have a higher
counter value than seen by the model checker3. In other words, all persistent variables
that are manipulated by the ISR have to be modeled as nondeterministic, not only
shared variables. In our case there were only three such variables (one was for the
time-triggered release of the detection loop), which have been identified and annotated
manually.
Memory-Mapped I/O: All I/O variables (the sensor inputs) must be annotated to
be nondeterministic. One option for that would be using the flag --nondet-volatile

3A lower value is not possible, because all considered invocations are nondeterministic
possibilities, and not enforced invocations.



for goto-instrument to regard all volatiles as nondeterministic, however, this results
in overapproximation for all shared variables (which are volatile as well), allowing for
valuations which are actually infeasible due to the nature of the algorithms operating
on the shared variable. Furthermore, this can override user-defined assumptions on the
value domain of sensors, considering actually impossible executions and thus produce
False Negatives on the verified properties.

In our case the microcontroller runs bare-metal code and uses memory-mapped
I/O to read sensors, i.e., accesses show up in the preprocessed C code as dereferencing
an address literal. In principle, it is therefore possible to identify such reads after the
C preprocessing stage. However, in general it is a non-trivial problem to identify all
these places, since indirect addressing is possible, which would require a full value
analysis of the program to figure out whether the effective address is in the I/O range.
At the moment we do not have a practical solution to this problem, which is why
we instrumented all inputs manually. To support this process, we developed a clang-
based [12] tool which generates a list of all dereferencing operations, suggesting the
places that should be considered for annotating nondeterminism in the C code. Since
we minimized the use of pointers to keep verification effort lower, the majority of the
entries in this list is indeed reading input registers.

6.3 Preprocessing against State-Space Explosion

After all architectural information has been added, the next big challenge is to verify
the instrumented properties. A problem here is, that the state space grows rapidly
from the architectural features, especially from the ISRs. In our case, the program has
around 2,500 lines of C code, and running cbmc already fails for two reasons: (1) the
program contains unbounded loops and (2) even if the loops were somehow bounded,
there would be too many SAT variables to be considered (millions in our case).
Building Sequential Modes: The original structure of our program could not be
verified, because the initialization and self-checks, were implemented as part of one
hierarchic state machine, executed in main loop. The necessary loop unwinding then
expanded the entire state machine as a whole. This resulted in too many SAT variables
and could not be processed on our machine (we run out of memory after hours, having
done only a fraction of the necessary unwinding).

To overcome this state space problem, we first partitioned our program into se-
quential modes, see Fig. 6. Each the initialization, the self-tests and the detection were
refactored into their own loops, which take place one after another. Interrupts were
enabled as late as possible, reducing the number of states to explore.

Initialization Self-Check Detection Emergency

Common
Live variables

Common
Live variables

Common
Live variables

assume assume assume guaranteeguaranteeguarantee

Fig. 6. Partitioning of software into strictly sequential modes, each verified individually and
cascaded using assume-guarantee reasoning.

Assume-Guarantee Reasoning: However, at this point it turned out, that the ini-
tialization and self-checks still contributed too many variables for the program to be
analyzed as a whole. As a countermeasure, the modes should now be analyzed indepen-
dently and reasoning on the overall correctness should be done using assume-guarantee
reasoning. Towards that, it was necessary to identify all possible program states be-
tween the modes, e.g., the detection mode can only be properly analyzed, if all possible
program states after initialization and self-check are considered. One concrete example
is, that the ERS determines the air pressure at ground level during the initialization,
which is used later during detection. Verifying the detection mode thus involves con-
sidering all possible pressure levels, by assuming nondeterministic values for them.

To reduce the complexity of assume-guarantee reasoning, we first turned each mode
into a potentially infinite loop which can only exit, if everything works as expected



These “guards” reduce the number of program states to be considered for the post-
decessor modes. For example, when analyzing the detection mode, we only need to
consider program states corresponding to successful initialization and self-checks.

To construct the program states between modes, we identified all live variables
between each two successive modes, i.e., all variables which are written in one mode
and possibly being read in its successor modes. As this is another error-prone work
that should not be done manually, we extended our clang-based tool to take this step
automatically.

After having identified the live variables at the end of each mode, we instrumented
them as illustrated in Listing 1: First, we added a nondeterministic assignment to each
variable just before the new mode starts (line 6). This allows for all possible values,
once the analysis on the new mode starts. Then, if due to some logical reason the value
range could be limited, we used an assume statement to restrict analysis to this value
range (line 7). However, to guarantee that the value domain is indeed complete, i.e.,
ensuring that no possible execution has been neglected, we added a matching assert
statement at the exit of the predecessor mode (line 3).

Listing 1. Illustration of assume-guarantee reasoning using cbmc at the program point be-
tween two sequential modes X → Y, sharing one live variable sharedvar.

1 // end of mode X
#ifdef ANALYZE_MODE_X

assert(sharedvar > -10.f && sharedvar < 50.f);
#endif
#ifdef ANALYZE_MODE_Y

6 sharedvar = nondet_float (); // introducing nondeterminism
assume(sharedvar > -10.f && sharedvar < 50.f);

#endif
// beginning of mode Y

A successful verification of the predecessor mode (here: X) means the asserts hold
true, therefore guarantees that live variables indeed satisfy the assumptions we make
at the beginning of the new mode (here: Y). Assume-guarantee reasoning therefore is
sound. Finding the value ranges is currently done manually; in doubt one can omit
the ranges, which leads to a safe over-approximation. However, tool support would be
favorable, since tight ranges means no false alerts during verification.

In summary, this mode-building reduced the number of properties from 458 to
below 250 in each mode, with 31 shared variables between them that were subject to
assume-guarantee process (see Table 2).
Removing Dead Code: When going through the verification process shown in Fig. 5,
it is desirable to entirely remove dead code (especially after mode-building and ana-
lyzing the modes separately), otherwise a lot of unreachable properties will be there,
slowing down the analysis and cluttering the results. Although goto-instrument offers
two slicing options, none of them removes dead code. This task is not trivial, since in
our case the modes share code, e.g, both self-check and detection use a function that
reads out the accelerometer. Again, we used our clang-based tool for this task, which
operates on the C code that is equivalent to the GOTO-program and removes dead
functions and variables (see Fig. 5).
Bounding Non-local Loops: A complexity-increasing problem for verification are
nested, stateful function calls, as they occur in hierarchical state machines. Our program
uses such hierarchical state machines to interact with the barometer and accelerometer
peripherals. If one of the inner states has transition guards, then the entire hierarchy
needs unrolling until these guards evaluate to true. In our case, we have guards like
waiting for ADC conversion to finish. Unfortunately, hierarchic state machines are a
popular design pattern in model-based design (e.g., Statemate, Stateflow, SCADE),
which therefore needs to be addressed rather than avoided.

We found that some guards in the inner state machines can be removed safely,
reducing costly unrolling. Assume that the guard will eventually evaluate to true (even
if there is no upper bound on the number of steps it takes): If all live data that is
written after this point is invariant to the number of iterations, then the guard can be
removed. Consequently, such irrelevant guards can be identified by first performing an



Table 2. Complexity of the verification before and after preprocessing. Unlike the full program,
which cannot be analyzed, assume-guarantee reasoning between sequential modes Initializa-
tion, Self-Check and Detection was computationally feasible.

Mode → Initialization Self-Check Detection All

lines of code 1,097 976 1,044 2,513
#functions 36 29 43 94
#persistent variables 36 38 59 72
#live variables at exit 31 31 n.a. n.a.

#properties 249 221 175 458
#VCCs 11,895 35,001 15,166 330,394
#SAT variables 5,025,141 8,616,178 6,114,116 n.a.

SAT solver run-timea 16 min 14 min 28 min infeasibleb

aOn an Intel Core-i7 vPro at 2.8 Ghz and 4 GB RAM.
bOut of memory after 3 hours; #VCCs and SAT variables were still growing.

impact analysis (find all variables that are influenced by the guard), followed by a loop
invariance test (identify those which are modified on re-iteration) followed by a live
variable analysis on the result (from the influenced ones, identify those which are being
read later during execution). If the resulting set of variables is empty, then the guard
can be removed safely. This technique is of great help for interacting with peripherals,
where timing may not influence the valuations, but otherwise contribute to state space
explosion. The technique is easily extended, if there are multiple guards.

On the other hand, if a guard potentially never evaluates to true, e.g., due to a
broken sensor, then there are two ways to treat this: If this is valid behavior, then
this guard can be ignored for the analysis (no execution exists after it). If it is invalid
behavior, then the guard should be extended by an upper re-try bound and this new
bounded guard can then be treated as explained above. After these transformations all
state machines could be successfully unrolled.

6.4 Keeping Assumptions Sound

We made use of assumptions for limiting value domains where possible, and to perform
assume-guarantee reasoning. Assumptions are a powerful tool in cbmc, however, it
is easy to add assumptions which are not satisfiable (UNSAT). Those rule out all
executions after the assume statement and thus might lead to wrong verification results.

Therefore, we have to ensure that the composite of all annotations is sound, other-
wise the verification outcome may be wrong despite the individual annotations being
correct. To check whether assumptions can be satisfied, we added a new check to cbmc,
which does the following: It inserts an assert(false) after each assumption and sub-
sequently runs the SAT solver on it. If the solver yields UNSAT for the assertion, it
means it is reachable and thus the assumption is valid. If it yields SAT, then all exe-
cutions were ruled out and thus the assumption is UNSAT and thus unsound. Finally,
we warn the user for each UNSAT assumption.

6.5 Verification Results

With our extensions of existing tools we were able to set up a correct verification
workflow for the software of the ERS. The complexity of the analysis (for each mode:
run-time, number of variables etc.) is summarized in Table 2. During the process we
identified several trivial and non-trivial defects, some of them were one deadlock in a
state machine, multiple overflows in sensor data processing and even one timing-related
error (barometer update took more steps than anticipated, which lead to wrong descent
rate). Interestingly enough, during flight tests we sporadically experienced some of these
errors, which by then could not be explained. One of the reasons for this is, that there
was little information about these errors due to limited logging and debugging facilities
on the microcontroller, and that we could not reproduce the environmental conditions
in the lab.



7 Conclusion
In this paper we described our approaches in developing a safety-critical emergency
recovery system for MAVs, in particular our efforts in applying methods and tools for
formal verification of embedded software. This study has shown that formal verification
of the entire, original software running on a microcontroller is possible, if appropriate
preprocessing techniques are applied. The state space can be reduced to a size that can
be covered by existing tools, but careful handling is necessary to obtain correct results.
The efforts did pay off in our case. Not only could we identify defects in the software,
but we obtained counterexamples for the defects, which can be the only useful source
of debugging information for resource-constrained embedded systems.

As future work, we are planning to extend our clang-based tool to perform not
only some, but all the steps we have taken automatically, as well as a complementary
software supporting the described iterative workflow.

References
1. The 2013 General Aviation Statistical Databook & 2014 Industry Outlook. Tech. rep.,

General Association of Aviation Manu1facturers (2014)
2. Abzug, M., Larrabee, E.: Airplane Stability and Control. Cambridge University Press,

2nd edition edn. (Oct 2005)
3. Beyer, D.: Status report on software verification. In: Ábrahám, E., Havelund, K. (eds.)

Tools and Algorithms for the Construction and Analysis of Systems, Lecture Notes in
Computer Science, vol. 8413, pp. 373–388. Springer Berlin Heidelberg (2014)

4. Bucur, D., Kwiatkowska, M.: On software verification for sensor nodes. Journal of Systems
and Software 84(10), 1693–1707 (2011)

5. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In: Jensen, K.,
Podelski, A. (eds.) Tools and Algorithms for the Construction and Analysis of Systems.
Lecture Notes in Computer Science, vol. 2988, pp. 168–176. Springer (2004)

6. Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Min, A., Monniaux, D., Rival, X.: The
astre analyzer. In: Sagiv, M. (ed.) Programming Languages and Systems, Lecture Notes
in Computer Science, vol. 3444, pp. 21–30. Springer Berlin Heidelberg (2005)

7. Cuoq, P. et. al.: Frama-C: A Software Analysis Perspective. In: Proceedings of the 10th
International Conference on Software Engineering and Formal Methods. pp. 233–247.
SEFM’12, Springer-Verlag, Berlin, Heidelberg (2012)

8. Dajiang Innovation Technology: DJI DropSafe. Online (December 2014), http://www.
dji.com/product/dropsafe, retrieved Feb. 2015

9. Drone Technology: RPAS MCFLY-HELIOS. Online (2015), http://www.
dronetechnology.eu/rpas-mcfly-helios/, retrieved Feb. 2015

10. Henzinger, T., Jhala, R., Majumdar, R., Sutre, G.: Software verification with blast. In:
Ball, T., Rajamani, S. (eds.) Model Checking Software, Lecture Notes in Computer Sci-
ence, vol. 2648, pp. 235–239. Springer Berlin Heidelberg (2003)

11. Lal, A., Reps, T.: Reducing concurrent analysis under a context bound to sequential
analysis. Formal Methods in System Design 35, 73–93 (2009)

12. Lattner, C.: LLVM and Clang: Next generation compiler technology. In: The BSD Con-
ference. pp. 1–2 (2008)

13. MARS Parachutes: M.A.R.S. 58. Online (2014), http://www.marsparachutes.com/
mars-58/, retrieved Jan. 2015

14. Mueller, M., D’Andrea, R.: Stability and control of a quadrocopter despite the complete
loss of 1, 2, or 3 propellers. International Conference on Robotics & Automation (2014)

15. Opale Paramodels: Online (2014), http://www.opale-paramodels.com/index.php/en/
shop-opaleparamodels/rescue-systems, retrieved Jan. 2015

16. Schlich, B., Kowalewski, S.: Model checking C source code for embedded systems. Inter-
national Journal on Software Tools for Technology Transfer 11, 187–202 (2009)

17. Skycat: SKYCAT Parachute Launcher. Online (2015), http://www.skycat.pro/
tech-specs/, retrieved March 2015

18. Steer Davies Gleave: Study on the Third-Party Liability and Insurance Requirements of
RPAS. Tech. Rep. November, European Commission (2014)

19. Tidorum Ltd.: Bound-t time and stack analyzer. website (2015), http://www.bound-t.
com/, retrieved Jan. 2015

20. Wu, X., Wen, Y., Chen, L., Dong, W., Wang, J.: Data Race Detection for Interrupt-Driven
Programs via Bounded Model Checking. 2013 IEEE Seventh International Conference on
Software Security and Reliability Companion pp. 204–210 (2013)

http://www.dji.com/product/dropsafe
http://www.dji.com/product/dropsafe
http://www.dronetechnology.eu/rpas-mcfly-helios/
http://www.dronetechnology.eu/rpas-mcfly-helios/
http://www.marsparachutes.com/mars-58/
http://www.marsparachutes.com/mars-58/
http://www.opale-paramodels.com/index.php/en/shop-opaleparamodels/rescue-systems
http://www.opale-paramodels.com/index.php/en/shop-opaleparamodels/rescue-systems
http://www.skycat.pro/tech-specs/
http://www.skycat.pro/tech-specs/
http://www.bound-t.com/
http://www.bound-t.com/

	SAFECOMP'15: Emergency Recovery System for MAVs
	1 Introduction
	2 Related work
	3 Challenges
	4 Proposed Emergency Recovery System for MAVs
	4.1 Internal Structure

	5 System Level Failure Analysis
	6 Software Verification
	6.1 Verification Workflow
	6.2 Missing Architectural Information
	6.3 Preprocessing against State-Space Explosion
	6.4 Keeping Assumptions Sound
	6.5 Verification Results

	7 Conclusion


