
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Understanding the Effects of Data Corruption on Application
Behavior Based on Data Characteristics
Citation for published version:
Stefanakis, G, Nagarajan, V & Cintra, M 2015, Understanding the Effects of Data Corruption on Application
Behavior Based on Data Characteristics. in Computer Safety, Reliability, and Security: 34th International
Conference, SAFECOMP 2015, Delft, The Netherlands, September 23-25, 2015, Proceedings. Lecture
Notes in Computer Science, vol. 9337, Springer International Publishing, pp. 151-165.
https://doi.org/10.1007/978-3-319-24255-2_12

Digital Object Identifier (DOI):
10.1007/978-3-319-24255-2_12

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Computer Safety, Reliability, and Security

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 25. Apr. 2024

https://doi.org/10.1007/978-3-319-24255-2_12
https://doi.org/10.1007/978-3-319-24255-2_12
https://www.research.ed.ac.uk/en/publications/a603b6a9-d7bb-42e8-b343-7e307074618e


Understanding the Effects
of Data Corruption on Application Behavior

Based on Data Characteristics

Georgios Stefanakis1, Vijay Nagarajan1, and Marcelo Cintra2 ∗

1 University of Edinburgh, United Kingdom
2 Intel, Germany

Abstract. In this paper, the results of an experimental study on the er-
ror sensitivities of application data are presented. We develop a portable
software-implemented fault-injection (SWIFI) tool that, on top of per-
forming single-bit flip fault injections and capturing their effects on ap-
plication behavior, is also data-level aware and tracks the corrupted
application data to report their high-level characteristics (usage type,
size, user, memory space location). After extensive testing of NPB-serial
(7.8M fault injections), we are able to characterize the sensitivities of
data based on their high-level characteristics. Moreover, we conclude
that application data are error sensitive in parts; depending on their
type, they have distinct and wide less-sensitive bit ranges either at the
MSBs or LSBs. Among other uses, such gained insight could drive the
development of sensitivity-aware protection mechanisms of application
data.

1 Introduction

Reliability challenges have long been present in all parts of a system due to
occurrences of anomalous physical conditions known as hardware faults [1]. De-
pending on the fault characteristics (location, type, timing, duration), the exe-
cuting workload and the underlying hardware, faults can either (a) get masked
by various levels of fault-masking effects (logic, architecture, application level)
and result in a correct execution with no visible effects or (b) not get masked
and result either in an observable execution upset (application crash, stall or
delay) or an unobservable output corruption (Silent Data Corruption - SDC).

Motivated by the aforementioned fact, in this paper we study the effects
of hardware-induced data corruption on application behavior in relation to the
high-level characteristics of the corrupted data and the executing workload. Our
purpose is to identify the error sensitivities and notice their variation for different
data characteristics (usage type, size, user, memory space location) and also
for different bit locations within the data; we define error sensitivity as the
probability of a hardware fault in that data (or bit) to result in an SDC.

∗ This work is supported by EPSRC grant EP/M00113X/1 to the University of Ed-
inburgh.



2 G. Stefanakis, V. Nagarajan, and M. Cintra

To do so, we employ software-implemented fault injection (SWIFI) to model
transient single-bit faults in memory locations during application execution in
an unprotected system and capture the corruption effect on the execution. Our
focus is on gaining detailed error-sensitivity insight of the data accessed by an
application. Therefore our SWIFI tool is data-level aware. Given an application
binary, without need of its source code, our tool can finely control the location
of the corruption in the application’s memory space without further intruding
the application behavior. Once a fault is injected at runtime, without need for
binary file modifications per test, it tracks the corrupted data to classify them
according to their use by the application. Meanwhile it monitors the execution’s
state and outcome to report back many diagnostics regarding the corruption
characteristics/effects. As we monitor until completion, all fault-masking effects
and corruption outcomes are captured.

SWIFI is commonly used in the literature mainly for system-level depend-
ability assessment of reliability mechanisms [2–6]. Other works that study error
sensitivities usually operate at a higher hardware level [7] or agnostic to the
corrupted data characteristics [8] or to the exact corrupted bit. Instead, here we
employ SWIFI to gain detailed error sensitivity insight at application data level
and at a per-bit granularity. Thus, the main value of our study stems from the
data-level awareness of the tests and the extensive set of tests performed. In gen-
eral, there are many possible uses of the obtained error sensitivity insight. E.g.,
it can be used (a) to increase the protection of more sensitive data under SW-
level fault-tolerant mechanisms, (b) to drive unequal protection of data words by
assigning stronger protection to more sensitive bit ranges under HW-level fault-
tolerant mechanisms, (c) to drive a sensitivity-aware SW-level modification of
applications, (d) to reduce the testing space of dependability assessment, etc.

In this paper, we make the following main contributions:
(a) We establish a portable instrumentation-based SWIFI framework that

can perform extensive tests on target binaries for a data-level aware study of the
exact effects of data corruption on application behavior.

(b) After performing extensive (7.8M) fault-injection tests, we observe the
error sensitivity of application data of the NPB-serial benchmarks based on
the data characteristics, along with the variation among different bit locations
of the data. We conclude that data are sensitive in parts; data holding output-
related values have continuous less-sensitive bit ranges at their LSBs and memory
addressing data at their MSBs. E.g., up to 32 LSBs of floating-point data in CG
(Conjugate Gradient) each have <1% probability to cause an SDC if corrupted.

2 SWIFI Framework

In this section we present our instrumentation-based SWIFI framework that can
perform extensive data-level aware fault injections and can track the corrupted
data to report their high-level characteristics.

Our proposed SWIFI framework (Fig. 1) operates as follows: First, a fault-
free run of the target binary is profiled to obtain (a) its expected correct output



Understanding the Effects of Data Corruption Based on Data Characteristics 3

(for SDC detection), (b) its normal execution time under instrumentation by our
tool (for delayed/stalled execution detection) and (c) its total number of memory
load accesses (for deciding the sample rate to drive the tests uniformly over the
test space). Then a single-fault injection tool is repeatedly invoked on a clean
instance of the target application, each time corrupting a different memory load
access. Once all tests complete, the extensive reported results are aggregated to
relate the corruption outcome to the corrupted data characteristics (Section 4).

The single-fault injection tool performs and monitors the fault-injection
tests. In each test, just before a specified memory load access (fault trigger), a
random bit of the accessed data is flipped to emulate a single-bit transient fault
in the accessed memory location (injected fault model). Then the rest of the
execution is monitored to report the exact end-to-end corruption effects. On top
of that, the corrupted data are tracked to classify their high-level characteristics
and, thus, report more corrupted data characteristics (Table 1). All these are
performed by special software that emulates the behavior of expected hardware
faults during application operation only (and not the kernel’s).

Fault trigger: First, the application-under-test is instrumented until the ex-
ecution reaches a specified memory load access to be corrupted. Using the mem-
ory load access as a fault trigger acts as both a spatial and a temporal trigger to
invoke the injection routine just before the load operation. This trigger captures
all possible times that a transient fault could occur and all possible live mem-
ory locations that could get corrupted. Thus it simplifies driving where/when to
inject a fault by just selecting a load access, without relying on external events.

Fault injection and Fault model: Once the trigger is reached, the injection
routine is invoked in a manner similar to a software trap. The chosen injected
fault model emulates single-bit transient faults in memory locations by randomly
flipping a bit of the data just before their access. The now-corrupted value is
stored at the same memory location, without further intruding the application’s
original behavior, to avoid activating any reliability mechanisms of the system.

Due to our focus on data-level error sensitivity, the chosen fault model suffices
without a need for precise realistic hardware fault models. Moreover, due to using
instrumentation-based SWIFI, the fault model does not need to be adapted per
target system but only to have the necessary high-level characteristics (type,
duration, location). In particular, we chose a bit-flip fault type to ensure that
data will always be corrupted at every test. The inject-before-load policy enforces

FAULT INJECTION FRAMEWORK for a given application

#total mem loads (L),
execution time,
correct output

sampling rate (S)

.app

profiling

.app

results

SINGLE- FAULT 
INJECTION TOOL

.app
test mem

load S

<corrupted data 
characteristics, 

corruption outcome>

SINGLE- FAULT 
INJECTION TOOL

.app
test mem
load 2*S

<corrupted data 
characteristics, 

corruption outcome>

SINGLE- FAULT 
INJECTION TOOL

.app
test mem
load 3*S

<corrupted data 
characteristics, 

corruption outcome>

SINGLE- FAULT 
INJECTION TOOL

.app
test mem
load 4*S

<corrupted data 
characteristics, 

corruption outcome>

SE
TU

P

L/
S 

IN
JE

CT
IO

N 
TE

ST
S

Fig. 1: Overview of our proposed data-level aware framework to capture the
application behavior under corruption through extensive injection tests.



4 G. Stefanakis, V. Nagarajan, and M. Cintra

emulation of transient faults as the injected corruption will not persist after the
corrupted location is overwritten. Modeling transient fault duration fits better
our purposes as they affect only a single memory object. Finally, the injected
fault’s location is in main memory as a natural fit for a data-aware investigation.

The goal of our tool is mainly to observe how corruption in application data
would affect the application’s behavior. For our purposes corrupting data loaded
from memory using an inject-before-load policy assists to cover as many as possi-
ble data used by an application while avoiding unnecessarily testing dead mem-
ory locations. This does not cover the entirety of application data; e.g. temporary
data in registers that are never stored/loaded to/from memory or memory data
never accessed. Despite faults are emulated only in memory, the fault model
can translate to emulate faults occurring in other functional units too without
revising the model and the injection policy. E.g., a fault in a register could be
effectively emulated in a test where its value is stored in memory and then loaded
but fault injected. Injecting directly faults all over the processor would be out
of scope of this SW-implemented methodology.

Monitoring, Data tracking and Reporting: After the injection, the rest
of the execution is still instrumented to monitor/report the effects of the cor-
ruption. As the instrumentation/analysis operates in a different virtual mem-
ory space to provide instrumentation transparency, the original binary observes
the same addresses and values as it would in an uninstrumented execution [9].
Therefore, the original binary behavior is not changed, apart from the injected
corruption, to ensure the non-intrusiveness of our injection tool.

Due to the chosen fault trigger, fault model and instrumentation-based injec-
tion we can perform data-level aware fault injection. Once the memory location
is corrupted and loaded, we track it as an application variable to get its high-
level characteristics. More precisely, at fault injection time, the tool tries to
finely identify as many characteristics of the corrupted data as possible (Table
1). Attributes such as their location in the memory address space (global, heap
or stack), size and user (system or user data) can be identified immediately.

Classifying the type of the corrupted data according to their use by the
application (Fig. 2) can be either immediate or it may require tracking the data
through the execution until a first meaningful use (i.e., to determine if they
are used for addressing memory or not). To elaborate, at fault injection we can
identify the first register (R) where the corrupted data (D’) are stored. If it is

[for an instruction window]

check if subsequent accessed memory 
addresses are equal to D or D'

D usage type 
is PTRMR

[until execution completion]
- track data propagation from R and M to 
other registers and memory locations
- check if subsequent accessed memory 
address computed using affected registers 

found
D usage type 

is PTRTP
D usage 

type is INT

else

else

found

no
n-

im
m

ed
ia

te
 

cl
as

si
fic

at
io

n
(d

at
a 

tr
ac

ki
ng

)

original data (D)
corrupted data (D')

corrupted memory location (M)
first register to store data (R)

register R type

FP

D usage 
type is 

FP

IP

D usage 
type is 

IP

D usage 
type is 
PTR

D usage 
type is 
PTR

else

else

D within binary

image ranges

SEG/SP

im
m

ed
ia

te
cl

as
si

fic
at

io
n

Fig. 2: Decision tree used by the single-fault injection tool to classify the cor-
rupted application data according to their first use by the application.



Understanding the Effects of Data Corruption Based on Data Characteristics 5

Table 1: Reported corruption characteristics and corruption effects
Characteristics of corrupted data

Injected bit-flip location, Memory address of corrupted data
Memory space location: global, heap or stack
Size: 1, 2, 4, 8 or 16 bytes
User: System library data or application-space (user) data
Usage FP: Floating-Point data (immediate classification)
type: IP: Instruction Pointer (immediate classification)

PTR: memory addressing data (immediate classification)
PTRMR: mem. addressing data (classification by checking subsequent Mem. References)
PTRTP: memory addressing data (classification by data tracking through Taint
Propagation until first use as memory addressing data within an instruction window)
INT: INTeger data (if none of the above)

Corruption effects
Total number of executed instructions
Execution Correct output
outcome: Delayed correct output: when the total execution time is a set amount of times

more than the normal uncorrupted execution time
Application crash
Application stall: due to excessive total executed instructions (or execution time)
Silent data corruption (SDC): wrong output

an FP register, the instruction counter or a segment/stack pointer register, we
can classify immediately the corrupted data as floating-point (FP), instruction
pointer (IP) or memory addressing data (PTR) respectively.

If the data usage type cannot be determined immediately, data tracking and
close monitoring of the execution is used. The corrupted (and the uncorrupted)
value is checked against all subsequent accessed effective memory addresses to
check if these values are used for memory addressing (PTRMR). Meanwhile, we
use dynamic taint analysis [10] to track the data propagation from the first regis-
ter (R) to hold the corrupted data and from the corrupted memory location (M).
After every instruction, we track the corruption propagation to other registers
and memory locations. This continues until a register whose contents have been
affected by the original corruption is used for computing a memory address. If
this happens within a specified instruction window, then the original corrupted
data are reported as memory addressing data (PTRTP). If none of the above
occur by the end of execution, the corrupted data are reported as INT.

We report memory addressing data as three separate categories, not only be-
cause they are identified by different means, but because they represent different
usage cases. PTRs are memory addressing data that when loaded from memory
have immediately the semantics of a pointer and are to be used as pointers.
PTRTPs are memory addressing data that are identified through Taint Prop-
agation analysis and are used to eventually compute a memory address; e.g. a
loop counter that is used as memory offset. PTRMRs are identified by checking
subsequent Memory References and are not immediately used as pointers.

After the injection, apart from the above, the tool keeps monitoring closely
the execution to capture all possible corruption effects. The execution time
is monitored to detect application stalls or delayed executions, the output is
checked for correctness or SDCs, and fatal signals are caught to detect crashes.
Once the execution completes (or stops due to a crash or stall), the tool reports
back all the captured corruption characteristics and corruption effects (Table 1).



6 G. Stefanakis, V. Nagarajan, and M. Cintra

3 Experimental Setup

The proposed SWIFI framework was implemented as a set of scripts and dynamic
binary instrumentation Pin tools [9]. Using Pin’s instrumentation enabled the
portability, transparency and efficiency properties of our tools. The full set of the
ten workloads of the NAS Parallel Benchmarks [11] (64-bit, NPB-serial version
3.3.1, input class size S, gcc 4.4.6 -o3, Linux kernel 2.6.32) was extensively tested
by our framework on a x86-64 computer cluster.

Before commencing with the individual fault-injection tests, the benchmarks
were profiled (Table 2) to obtain their total memory load accesses and their
normal uncorrupted execution time under instrumentation. The number of total
memory loads indicated the test space size. Given that it ranged from 4.7M to
914.9M, summing up to a cumulative total of 2.28 billion, testing every bit of
every memory load access would be impractical and unreasonable. Instead we set
sample rates per benchmark (Table 2) to uniformly distribute our fault-injection
tests over the test space of possible memory load accesses to corrupt. Moreover,
in every test the bit-flip was randomly injected within the tested data to ensure
an equal distribution of tested bits. The chosen sample rates ranged from 1/5 to
1/2947 to uniformly test each benchmark in approximately the same total time
on the available computer cluster, where the embarrassingly parallel nature of
the tests was exploited for a faster completion of the experiments (less than a
week). The test space sampling brought the total number of performed fault-
injection tests to 7.8M for the full benchmark suite (ranging from 310.4K to
1.33M for individual benchmarks). Despite the test space sampling, compared
to related fault-injection based works, we performed significantly more extensive
fault-injection tests that, coupled with the detailed collected test results, enabled
us to thoroughly elaborate on them, as we discuss in the next section.

Table 2: Profiling information for the tested NPB-serial benchmarks
Bench- Total memory Execution Sample Memory loads Test space
mark loads (M) time (sec) rate tested (K) coverage (%)

BT 187.5 20.7 1/234 801.6 0.43
CG 111.9 22.7 1/153 731.3 0.65
DC 33.1 21.9 1/43 769.9 2.33
EP 778.2 52.3 1/2461 316.2 0.04
FT 112.0 31.9 1/216 518.5 0.46
IS 4.7 3.4 1/5 959.3 20.00
LU 62.9 16.5 1/62 1015.6 1.61
MG 10.6 13.7 1/8 1335.0 12.50
SP 66.9 15.3 1/62 1079.3 1.61
UA 914.9 53.3 1/2947 310.4 0.03

Total 2283.1 - - 7837.6 0.34

4 Experimental Results - Discussion

In this section, we study the results to gain insight and elaborate on the varying
error sensitivities of application data based on their high-level characteristics.

Application-level error-sensitivity variations: Fig. 3 shows the break-
down of the exact end-to-end corruption effects on the tested benchmarks. This



Understanding the Effects of Data Corruption Based on Data Characteristics 7

breakdown reconfirms that hardware faults have varying effects on application
behavior. Out of the 7.8M performed fault-injection tests on NPB-serial, 61.1%
resulted in correct execution. As for the rest outcomes, 23.5% of the total tests
resulted in SDCs, 15% in application crashes, 0.3% in application stalls and
less than 0.1% in delayed correct executions. More importantly the number of
tests that corrupted silently the output varied per benchmark; the reported oc-
currences of SDCs ranged from 5.8% (DC) up to 37.9% (IS). This indicates
that applications have different inherent error-sensitivity characteristics mostly
attributed to their data-level sensitivity and their data access patterns.

Data-level error-sensitivity variations: Due to the data-level awareness
of the fault-injection tests, we can study how the error sensitivity of applica-
tion data varies in relation to their high-level characteristics. For this purpose
we introduce the experiment-based Data Vulnerability Factor (eDVF) that we
calculate using our testing results and we define as the statistical probability of
a corruption in specified data categories to result in an SDC.

Fig. 4 shows the eDVF variation over the tested applications for the various
high-level data characteristics that our fault-injection framework can identify.
Generally most eDVFs are around 0.2, with limited exceptions going as high
as 0.83, and quite a few being less than 0.05. This points that application data
sensitivity can be characterized according to their characteristics. In a few cases,
eDVFs are down to zero due to no reported SDC outcomes or due to absence of
the particular data categories in the specific benchmark; in any case indicating
them as less error-sensitive data for the application in question.

System library data (Fig. 4(c)) are less sensitive almost consistently across
all benchmarks as they tend not to be output related and if corrupted tend to get
masked or cause crashes. On the contrary, in some benchmarks, there is a trend of
longer data being more vulnerable (Fig. 4(b)), as longer data often hold output-
related values and thus if corrupted are more likely to corrupt the output too. As
for the usage type eDVFs (Fig. 4(d)), there is no benchmark wide observation
to be made. Despite that, they can be used in a per-application basis to rank
the data sensitivities according to their type. Moreover, given the application’s
data access patterns, they can explain the total application error sensitivity.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

B
T

C
G

D
C

E
P F
T IS LU M
G S
P

U
A

To
ta

l

Stall
Delayed
Crash
SDC
Correct

 

 
 

 

 

Fig. 3: Breakdown of corruption outcomes per tested NPB-serial benchmark and
in total over all performed injection tests.



8 G. Stefanakis, V. Nagarajan, and M. Cintra

BT CG DC EP FT IS LU MG SP UA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Global Heap Stack Total

 

 
 

eD
V

F

(a) Variations depending on location of data in the memory space

BT CG DC EP FT IS LU MG SP UA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
1B 2B 4B 8B 16B Total

 

 
 

eD
V

F

(b) Variations depending on size of data (in bytes)

BT CG DC EP FT IS LU MG SP UA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
System−data User−data Total

 

 
 

eD
V

F

(c) Variations depending on user of data (system library, user space)

BT CG DC EP FT IS LU MG SP UA

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
INT
FP
IP
PTR
PTRMR
PTRTP

Total

 

 
 

eD
V

F

(d) Variations depending on usage type of data

Fig. 4: Error-sensitivity variations of application data per tested NPB-serial
benchmark depending on different high-level characteristics. Total indicates the
reported SDCs for a given benchmark regardless of data characteristics.



Understanding the Effects of Data Corruption Based on Data Characteristics 9

Given the volume of our tests, our study captures the varying error sensi-
tivities of application data per application with a high statistical confidence.
As there are numerous combinations of data characteristics, only the variations
per single data characteristics were presented here. Since the results of our ex-
periments allow to compute the eDVFs for combined data characteristics, the
application data error sensitivities can also be investigated more closely.

Per-bit data-level error-sensitivity variations: Moving down to per-
bit investigation we can get more consistent error-sensitivity insight. Fig. 5-
6 show how the per-bit error sensitivity varies among application data usage-
type categories (see Table 1), while it shows common location patterns per each
category across most of the tested applications. For given combinations of usage
types and data sizes, the more-sensitive bits tend to concentrate in continuous
bit ranges either at the MSBs (Fig. 5(a)-5(b)) or at the LSBs (Fig. 5(c)-6(b)) for
most of the tested benchmarks, while the remaining bit ranges have generally
near-zero eDVF per bit. All these suggest that we can clearly identify bit ranges
within particular application data with distinct sensitivity levels to confidently
conclude that application data are sensitive in parts.

More precisely, for the tested floating-point data (FP-8B, Fig. 5(a)) the less-
sensitive bit ranges are located at their LSBs across most of the tested bench-
marks, while moving towards the MSBs the per-bit eDVF increases steadily.
When considering as less-sensitive bits those with per-bit eDVF less than 0.01,
the less-sensitive bit-range width varies from 20 LSBs for SP up to 32 LSBs for
CG, while many of these bits never resulted in an SDC. For the tested FPs, most
of the non-SDC observed outcomes were correct executions. The observed sensi-
tivity variations are explained by the nature of FPs where their LSBs only affect
the accuracy of computations, are often discarded by rounding and tend not to
affect the output. Moving to corruptions in MSBs it is expected that the data
upset is intensified and as such the likelihood of resulting in an SDC increases.
This also explains the varying less-sensitive bit-range width among applications
as they have different precision requirements. Moreover it explains the different
FP-sensitivity behavior in IS (Integer Sorting), where FPs are not part of the
output but control the execution and are more likely to cause output corruption.

Similar to the FP data, the less-sensitive bit ranges in the tested INT data
are located at their LSBs (INT-8B, Fig. 5(b)) but show higher eDVF per bit
than their FP counterparts, while the pattern holds for higher eDVFs per bit
when moving towards the MSBs. When considering as less-sensitive bits those
with per-bit eDVF less than 0.10, the less-sensitive bit-range width varies from
24 LSBs for LU up to 43 LSBs for EP (not including DC and IS). This common
behavior suggests that data holding values related to the computation, as both
FPs and INTs do, tend to corrupt the output when they are corrupted at a
greater magnitude (i.e., at MSBs). INTs can also be separated into distinct bit
ranges with different sensitivity levels. Though, as they are used in many different
application specific ways, there is more variation in the width of the less-sensitive
ranges and not a common increasing eDVF pattern in the more-sensitive ones.



10 G. Stefanakis, V. Nagarajan, and M. Cintra

BT

CG

EP

FT

IS

LU
MG

SP

UA

63 55 47 39 31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
V

F
 p

er
 b

it

FP−8B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

(a) Per-bit variations within FP data (8 bytes)

BT

CG

DC
EP

FT

IS

LU

MG

SPUA

63 55 47 39 31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
V

F
 p

er
 b

it

INT−8B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

(b) Per-bit variations within INT data (8 bytes)

63 55 47 39 31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
V

F
 p

er
 b

it

IP−8B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

(c) Per-bit variations within IP data (8 bytes)

BT

CG

DC

EP

FT

IS

LU

MG

SP

UA

63 55 47 39 31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
V

F
 p

er
 b

it

PTR−8B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

(d) Per-bit variations within PTR data (8 bytes)

Fig. 5: Per-bit error-sensitivity variations (within combinations of data usage
types and sizes) per tested NPB-serial benchmark. Background bars show the
per-bit breakdown of corruption outcomes in total over all benchmarks.



Understanding the Effects of Data Corruption Based on Data Characteristics 11

BT

DC

FT

IS
LU

MG

SP

UA

63 55 47 39 31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
V

F
 p

er
 b

it

PTRMR−8B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

(a) Per-bit variations within PTRMR data (8 bytes)

BT

CG

DC

EP

FT

IS

LU

MG

SP

UA

63 55 47 39 31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
V

F
 p

er
 b

it

PTRTP−8B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

(b) Per-bit variations within PTRTP data (8 bytes)

BT

CG

DC

FT

IS

LU

MG

SP

UA

31 23 15 7 0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
V

F
 p

er
 b

it

PTRTP−4B

BT
CG
DC
EP
FT
IS
LU
MG
SP
UA

Stall
Delayed
Crash
Correct
SDC

(c) Per-bit variations within PTRTP data (4 bytes)

Fig. 6: Same as Fig. 5.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

eD
V

F
 p

er
 b

it

te
st

 d
is

tr
ib

ut
io

n 
ov

er
 d

at
a 

bi
ts

0

31313

62626

93940

125253

156566

tested bit

127 119 111 103 95 87 79 71 63 55 47 39 31 23 15 7 0

SDC Correct Crash Delayed StallFull−NPB

Fig. 7: Per-bit error-sensitivity variations (and breakdown of rest corruption out-
comes) in total over all benchmarks, regardless of data usage type and size.
Dotted line shows the number of times each bit was tested.



12 G. Stefanakis, V. Nagarajan, and M. Cintra

Moving on to memory addressing data (Fig. 5(c)-6(c)), we notice a rever-
sal of the per-bit sensitivities; corruption at LSBs tends to result in SDCs and
corruption at MSBs in application crashes mostly. This is because corruptions
in MSBs of memory addressing data will lead to pointers into invalid mem-
ory locations and thus cause an application crash. On the contrary, corrup-
tions in LSBs are more likely to lead to pointers into valid memory locations
with undesired contents (or incorrect instructions) and thus corrupt the ap-
plication output (or the instruction flow) but without causing an immediate
crash. This is why the sensitive bit-range width of IP data is narrower than the
PTR/PTRMR/PTRTP ones that are similar. The application program space
is narrower compared to the data memory space and, thus, there are less bits
in IPs (than in PTR/PTRMR/PTRTP) that if corrupted could still point to a
valid location and not cause an application crash but an SDC. Nevertheless, the
clear behavior for most benchmarks still enables to identify distinct sensitivity
levels within different bit ranges of memory addressing data too.

As shown, it was promising to move into studying the effects of data cor-
ruption based on the corrupted bit location when considering specific high-level
application data characteristics (i.e., usage type, size). Especially due to the
usage-type-based classification, we were able to (a) further understand the pre-
vious eDVF usage-type results (Fig. 4(d)) and (b) get more consistent results
among most benchmarks regarding the location patterns of more-sensitive appli-
cation data parts. What changes across benchmarks is the less-sensitive bit-range
width and the sensitivity intensity levels of the rest. For more detailed insight
the eDVF per-bit variation can also be analyzed for combined data characteris-
tics. As we can now identify clear bit ranges within particular application data
with distinct sensitivity levels, the bit-level insight can be used instead of the
higher-level eDVFs to characterize application data sensitivities more accurately.

Similar analysis could be performed for each of the other identified high-level
characteristics of the corrupted data (i.e., location, user) or for the total per-bit
eDVFs for all tested benchmarks combined (Fig. 7). Such analysis though does
not provide the same clear insight, as the per usage type analysis, because the
per-bit variation depends mostly on how the data-under-consideration are used.

5 Related Work

Various analytical and experimental techniques have been proposed usually for
dependability assessment of systems and reliability mechanisms. Analytical tech-
niques model the behavior of HW structures under the presence of faults usually
through slow microarchitectural analysis [7]. An alternative is to use experimen-
tal techniques, such as experimental verification, error logging or full-system
simulation under simulated faults. As these are also slow, the experimental ap-
proach of fault injection has been used instead to test real systems under
realistic faults. Fault injection can be HW [12, 3, 4] or SW implemented [2–6, 13,
14]. In HW-implemented injection, faults are injected physically by electromag-
netic interference and radiation [12] or through the circuit pins [3, 4]. Although



Understanding the Effects of Data Corruption Based on Data Characteristics 13

these inject real hardware faults that can reach all locations, they lack flexi-
bility and are difficult to operate and control. Moreover, they suffer from low
portability as they target specific systems, require special purpose dedicated
hardware to access the tested hardware and may damage the tested system.
On the contrary, SW-implemented fault injection (SWIFI) overcomes most
of these drawbacks by injecting realistic faults using software methods. SWIFI
achieves higher properties of repeatability, controllability (in space and time),
reproducibility, non-intrusiveness and efficacy [12]. Generally, in SWIFI, tran-
sient faults are injected by adding traps or replacing instructions, either at pre-
runtime or at runtime. Pre-runtime injection methods mutate the application,
i.e., by substituting instructions and program data [14] or by source code muta-
tion [13]. Runtime injection methods most commonly corrupt memory or register
contents using time-based, path-based or stress-based triggers, while they inject
faults by direct program memory image corruption [6], dynamic process con-
trol structure corruption using debugging registers [2, 4, 5], forcing execution of
pre-loaded routines using software traps [3, 13] or hardware breakpoints [3, 4].

Varying error sensitivities: Many approaches have implied a sensitivity
classification of hardware parts albeit without a formal exploration [15, 16]. Sim-
ilarly, other approaches implied a data sensitivity classification based on cache
access patterns [17]. Moving to higher abstraction levels is promising to observe
the varying effects of faults [4, 13]. Similar variations are implied in approaches
where code segments [18, 19] or individual instructions [20] are marked as critical.
More formally, a reliability-aware analysis can be used to detect statistically-
vulnerable code segments [21] and instructions [20, 22]. The same applies for
data-level sensitivities, where it has been implied that not all data are equally
sensitive, i.e., by marking data segments as non-critical if they only affect the
output of multimedia workloads [23], or as approximate if their preciseness is
not required [24]. More formally, analysis can further elaborate on the criticality
of data, e.g., by profiling data according to their liveliness [22], or by detecting
sensitive bit ranges [25] within data with known value ranges. For the same pur-
pose, finely-controlled fault injection and execution monitoring can be used for
more insight on the corruption effects in a per-bit manner [8].

6 Conclusion

In this paper we developed an instrumentation-based SWIFI tool that is data-
level aware and tracks application data in order to gain detailed error-sensitivity
insight at application data level. We showed through a set of extensive fault-
injection experiments on NPB-serial that we can analyze the exact effects of data
corruption on application behavior based on the high-level characteristics of the
corrupted data (usage type, size, user, memory space location). This not only
enabled to capture the varying sensitivities of data given their characteristics but
also to identify less-sensitive bit ranges within data. Among many potential fu-
ture uses, the gained insight could motivate the development of sensitivity-aware
protection mechanisms trading-off between protection cost and fault coverage.



14 G. Stefanakis, V. Nagarajan, and M. Cintra

References

1. Sorin, D.J.: Fault tolerant computer architecture. Synthesis Lectures on Computer
Architecture 4(1) (2009)

2. Kanawati, G., et al.: FERRARI: A flexible software-based fault and error injection
system. Trans. on Computers 44(2) (1995)

3. Skarin, D., et al.: GOOFI-2: A tool for experimental dependability assessment. In:
DSN. (2010)

4. Stott, D., et al.: NFTAPE: A framework for assessing dependability in distributed
systems with lightweight fault injectors. In: IPDS. (2000)

5. Carreira, J., et al.: Xception: A technique for the experimental evaluation of de-
pendability in modern computers. Trans. on Software Engineering 24(2) (1998)

6. Segall, Z., et al.: FIAT - Fault injection based automated testing environment. In:
FTCS. (1988)

7. Mukherjee, S.S., et al.: A systematic methodology to compute the architectural
vulnerability factors for a high-performance microprocessor. In: MICRO. (2003)

8. Ayatolahi, F., et al.: A study of the impact of single bit-flip and double bit-flip
errors on program execution. In: SAFECOMP. (2013)

9. Luk, C.K., et al.: Pin: Building customized program analysis tools with dynamic
instrumentation. In: PLDI. (2005)

10. Zhu, Y., et al.: Privacy Scope: A precise information flow tracking system for
finding application leaks. Technical report (2009)

11. Bailey, D., et al.: The NAS parallel benchmarks. Intern. Journal of High Perfor-
mance Computing Applications 5(3) (1991)

12. Arlat, J., et al.: Comparison of physical and software-implemented fault injection
techniques. Trans. on Computers 52(9) (2003)

13. Hiller, M., et al.: PROPANE: An environment for examining the propagation of
errors in software. In: ISSTA. (2002)

14. Gerardin, J.P.: The DEF.Injecto test instrument, assistance in the design of reliable
and safe systems. Computers in Industry 11(4) (1989)

15. Greskamp, B., et al.: BlueShift: Designing processors for timing speculation from
the ground up. In: HPCA. (2009)

16. Ernst, D., et al.: Razor: A low-power pipeline based on circuit-level timing specu-
lation. In: MICRO. (2003)

17. Zhang, W., et al.: Performance, energy, and reliability tradeoffs in replicating hot
cache lines. In: CASES. (2003)

18. de Kruijf, M., et al.: Relax: An architectural framework for software recovery of
hardware faults. In: ISCA. (2010)

19. Reis, G.A., et al.: SWIFT: Software implemented fault tolerance. In: CGO. (2005)
20. Borodin, D., et al.: Instruction-level fault tolerance configurability. Journal of

Signal Processing Systems (2009)
21. Feng, S., et al.: Shoestring: Probabilistic soft error reliability on the cheap. In:

ASPLOS. (2010)
22. Mehrara, M., Austin, T.: Exploiting selective placement for low-cost memory

protection. TACO 5(3) (2008)
23. Lee, K., et al.: Partially protected caches to reduce failures due to soft errors in

multimedia applications. Trans. on VLSI Systems 17(9) (2009)
24. Sampson, A., et al.: EnerJ: Approximate data types for safe and general low-power

computation. In: PLDI. (2011)
25. Chang, J., et al.: Automatic instruction-level software-only recovery. In: DSN.

(2006)


