Skip to main content

Discovery of Salient Low-Dimensional Dynamical Structure in Neuronal Population Activity Using Hopfield Networks

  • Conference paper
  • First Online:
Similarity-Based Pattern Recognition (SIMBAD 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9370))

Included in the following conference series:

  • 2119 Accesses

Abstract

We present here a novel method for the classical task of finding and extracting recurring spatiotemporal patterns in recorded spiking activity of neuronal populations. In contrast to previously proposed methods it does not seek to classify exactly recurring patterns, but rather approximate versions possibly differing by a certain number of missed, shifted or excess spikes. We achieve this by fitting large Hopfield networks to windowed, binned spiking activity in an unsupervised way using minimum probability flow parameter estimation and then collect Hopfield memories over the raw data. This procedure results in a drastic reduction of pattern counts and can be exploited to identify prominently recurring spatiotemporal patterns. Modeling furthermore the sequence of occurring Hopfield memories over the original data as a Markov process, we are able to extract low-dimensional representations of neural population activity on longer time scales. We demonstrate the approach on a data set obtained in rat barrel cortex and show that it is able to extract a remarkably low-dimensional, yet accurate representation of population activity observed during the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abeles, M., Bergman, H.: Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. J. Neurophysiol. 70(4), 1629–1638 (1993)

    Google Scholar 

  2. Arieli, A., Shoham, D.: Coherent spatiotemporal patterns of ongoing activity revealed by real-time optical imaging coupled with single-unit recording in the cat visual cortex. J. Neurophysiol. 73(5), 2072–2093 (1995)

    Google Scholar 

  3. Brown, E.N., Kass, R.E., Mitra, P.P.: Multiple neural spike train data analysis: state-of-the-art and future challenges. Nat. Neurosci. 7(5), 456–461 (2004)

    Article  Google Scholar 

  4. Cover, T., Thomas, J.: Elements of Information Theory, 2nd edn. Wiley, New Jersey (2006)

    MATH  Google Scholar 

  5. Gansel, K.S., Singer, W.: Detecting multineuronal temporal patterns in parallel spike trains. Front. Neuroinformatics 6(May), 18 (2012)

    Google Scholar 

  6. Grün, S., Rotter, S.: Analysis of Parallel Spike Trains. Springer, Heidelberg (2010)

    Book  Google Scholar 

  7. Hillar, C., Effenberger, F.: hdnet - hopfield denoising network. https://github.com/team-hdnet/hdnet (2015)

  8. Hillar, C., Sohl-Dickstein, J., Koepsell, K.: Efficient and optimal little-hopfield auto-associative memory storage using minimum probability flow. In: NIPS Workshop on Discrete Optimization in Machine Learning (DISCML) (2012)

    Google Scholar 

  9. Hillar, C., Sohl-Dickstein, J., Koepsell, K.: Novel local learning rule for neural adaptation fits Hopfield memory networks efficiently and optimally. BMC Neurosci. 14(Suppl 1), P215 (2013)

    Article  Google Scholar 

  10. Hillar, C., Tran, N.: Robust exponential memory in Hopfield networks. arXiv e-prints (2014)

    Google Scholar 

  11. Hopfield, J.: Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79(8), 2554–2558 (1982)

    Article  MathSciNet  Google Scholar 

  12. Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift fur Physik 31, 253–258 (1925)

    Article  Google Scholar 

  13. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biol. 5(4), 115–133 (1943)

    MathSciNet  MATH  Google Scholar 

  14. Minlebaev, M., Colonnese, M., Tsintsadze, T., Sirota, A., Khazipov, R.: Early gamma oscillations synchronize developing thalamus and cortex. Science 334(6053), 226–229 (2011)

    Article  Google Scholar 

  15. Picado-Muiño, D., Borgelt, C., Berger, D., Gerstein, G., Grün, S.: Finding neural assemblies with frequent item set mining. Front. Neuroinformatics 7(May), 9 (2013)

    Google Scholar 

  16. Pipa, G., Wheeler, D.W., Singer, W., Nikolić, D.: NeuroXidence: reliable and efficient analysis of an excess or deficiency of joint-spike events. J. Comput. Neurosci. 25(1), 64–88 (2008)

    Article  Google Scholar 

  17. Rosenblatt, F.: The perceptron: a probabilistic model for information storage and organization in the brain. Psychol. Rev. 65(6), 386 (1958)

    Article  Google Scholar 

  18. Santos, L.V., Ribeiro, S., Tort, A.B.L.: Detecting cell assemblies in large neuronal populations. J. Neurosci. Methods 220(2), 149–166 (2013)

    Article  Google Scholar 

  19. Sohl-Dickstein, J., Battaglino, P., DeWeese, M.: New method for parameter estimation in probabilistic models: minimum probability flow. Phys. Rev. Lett. 107(22), 220601 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Yuri Campbell for helpful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Effenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Effenberger, F., Hillar, C. (2015). Discovery of Salient Low-Dimensional Dynamical Structure in Neuronal Population Activity Using Hopfield Networks. In: Feragen, A., Pelillo, M., Loog, M. (eds) Similarity-Based Pattern Recognition. SIMBAD 2015. Lecture Notes in Computer Science(), vol 9370. Springer, Cham. https://doi.org/10.1007/978-3-319-24261-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24261-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24260-6

  • Online ISBN: 978-3-319-24261-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics